Clustering Large datasets into Price indices - CLIP

Matthew Mayhew
Index Numbers Methodology

Office for National Statistics
Overview

01. Web Scraping
02. Overcoming the Product Churn Issue
03. Finding the groups
04. New Data and Forming the Index
05. Results
06. Future Work
Web Scraping
Motivation for web scraping

- Consumer Prices Index including Owner Occupied Housing Costs (CPIH) is the most comprehensive measure of inflation in the UK.

- Johnson Review published in January 2015, recommended increasing the use of alternative data sources in consumer prices.
Web scraping in ONS

- Prices for 33 CPIH items from 3 online retailers: TESCO, Sainsbury’s, Waitrose
- Daily collection (around 8,000 price quotes, compared to 6,800 a month for traditional collection)
- Collects price, product name and discount type
- Ongoing since June 2014
Limitations

- **Market coverage**
 Large retailers only, permission, regional variation?

- **High product churn**
 Traditional methods struggle

- **Only prices not expenditure**
 What do people actually buy?

- **Technological difficulties**
 Scraper breaks, time and cost
Product Churn

- Product Churn is the process of products leaving and/or entering the sample.
- This can either be:
 - Product goes out of stock, temporally leaves the sample,
 - Product is restocked, and reenters the sample,
 - Product is discontinued and permanently leaves the sample,
 - Product is new to the market
 - Products being rebranded
Product Churn – Example
Product Churn - Apples
Product Churn - Strawberries
Product Churn - Tea
Product Churn – Red Wine
Overcoming the Product Churn Issue
Problems due to Product Churn

• With long datasets there is minimal chance of product being observed in every period, especially and high frequencies
• Causes problems with tradition methods
Possible Solutions

- Impute the missing prices in the appropriate period
 - ITRYGEKS
- Adjust for the change in quality due to the change in products on the market
 - FEWS
- Track groups of products over time
 - CLIP
Why track groups not products?

- Consumers have preferences.
- Preferences might be product specific, i.e.
 - Product A ≺ Product B
- Preferences might be characteristic specific instead
 - Characteristic 1 ≺ Characteristic 2
Why track groups not products?

• Therefore there might be a group of products who’s have the consumer’s preferred characteristics.

• The consumer would be indifferent to those products with their preferred characteristics.

• This group is what is tracked over time.
Finding the groups
How to find these groups?

- Usually the preferences would be determined by finding utility functions and maximising under a budget constraint.

- Utility functions can’t be calculated with web scraped data – lacking quantity information.
Groups by clustering

- Groups are instead found by clustering the products
- Clusters are found using the *Mean Shift* algorithm
- Mean Shift was used as no a priori choices about cluster shapes and number of clusters
Forming Clusters
Characteristics used to form clusters

- Product Name
- Store
- Offer
- Price
Clustering - Tea
Clustering - Tea
Price Distributions

The graph depicts price distributions with two types: CPI (in blue) and Web Scraped (in red). The x-axis represents price, while the y-axis shows density. The distributions are compared over a price range from 1 to 5.
Clustering - Tea
New Data and Forming the Index
What to do with new data?

- **Solution 1: Recluster the data**
 - Problem completely new clusters will be found

- **Solution 2: Assign Data to Clusters**
 - This is done using a decision tree
Assigning Data

- The decision tree finds the underlying rules that make up the cluster.
- Price is removed as a characteristic when finding the rules.
- In subsequent months when new data is collected, the products are classified using this tree.
- The product mix in each cluster will vary but the cluster itself is the same.
Decision Tree

Characteristics:
Product Number = 37
Store = Tesco
Offer = NA
Forming the Index

- The price for a specific cluster is calculated as the geometric mean of the products in that cluster.
- The price for that cluster is then compared to the price for that cluster in the base month.
Price Relatives Per Cluster
The Price relatives are then aggregated over clusters to form the item index.

These are weighted together with the following weights:

\[w_i = \frac{|C_i^0|}{\sum_k |C_k^0|} \]

So for this Tea Data \(w_0 = 0.61 \), \(w_1 = 0.22 \) and \(w_2 = 0.17 \)
Tea CLIP
Results
Strawberries
Tea
Future Work
Assessing against approach to Index Numbers

- Assessed against the Test/Axiomatic approach only fails the identity, time reversal and Price Bounce tests (Note: FEWS does as well)
- To do:
 - Economic Approach
 - Statistical Approach
Test Assumptions about Substitution

• Do consumers substitute within clusters?
• Do consumers substitute between clusters?
Clothing and other forms

• CLIP might be more suited to Clothing Items
 • ONS is to release research into this
• Testing a geometrically aggregated CLIP as well as other variants of the index
Men’s Jeans

The graph shows the index values for different types of jeans over a period from October 2014 to October 2015. The x-axis represents the date, and the y-axis represents the index. The graph indicates fluctuations in the index values across the specified dates.
Women’s coats
More Information

More information on the CLIP along with more results can be found on the Office For National Statistics website.

https://www.ons.gov.uk/economy/inflationandpriceindices/articles/researchindicesusingwebscrapedpricedata/clusteringlargedatasetsintopriceindicesclip
Questions?

- Contact Details
 - Matthew.mayhew@ons.gov.uk
 - methodology@ons.gov.uk
- For CPIH enquiries please contact
 - CPI@ons.gov.uk