The impact of weight shifts on inflation
Evidence for the euro area HICP

Sebastian Weinand (Deutsche Bundesbank)
Chapter 1

Introduction
Motivation
Large weight changes in euro area HICPs due to Covid-19

Sebastian Weinand (Deutsche Bundesbank)
17th meeting of the Ottawa Group - 7 June 2022
Page 4
Contribution

- Can we quantify the aggregate impact of changing weights or quantities on inflation?

- We propose two formal decompositions of the inflation rate into

 1. Price change and weighting effects
 2. Pure price change and quantity effects
Chapter 2

Methodology
HICP inflation

- Annual price change of the Harmonised Index of Consumer Prices (HICP) in month m of year y denoted as inflation rate $\pi^{y|m}$

- HICP weights in year y represent expenditure patterns of the previous year

- It can be shown that $\pi^{y|m}$ …
 - contains both current and previous period weights in months $m = 1, \ldots, 11$
 - Weighting and quantity effects possible
 - but relies solely on current period weights in December ($m = 12$)
 - No weighting and quantity effects
Decomposition 1: Price change and weighting effects

- Introducing official weights applied in HICP compilation in year $y - 1$ yields:

$$\pi^y_1 = \text{Price change effect} + \text{Weighting effect}, \quad (1)$$

where the...

- **price change effect** measures the aggregate price change when HICP weights are kept constant at previous year’s level

- **weighting effect** captures the total impact of HICP weight changes on the inflation rate

- But: Expenditure shares underlying the weights contain both prices and quantities

 - Weighting effects may arise even if quantities do not change
How to disentangle quantity changes?

- Disentangling quantity effects from inflation can be achieved by introducing a new set of weights into the decomposition.

- These weights...

 • are not publicly available, but can be derived from official weights, taking into account country-specific compilation methods over time.

 • rely on quantities dating back one year further, compared to official weights.

 • are accurate for countries which applied the (optional) price-updating of the expenditure shares.
Decomposition 2: Pure price change and quantity effects

Introducing the (newly derived) weights into the decomposition of π_y^m yields:

$$\pi_y^m = \text{Pure price change effect} + \text{Quantity effect,} \quad (2)$$

where the…

- **pure price change effect** measures the aggregate price change when quantities are kept constant at previous year’s level

 ➢ Conceptually, defined by a Lowe index

- **quantity effect** measures the total impact of a change in quantities on the inflation rate
Chapter 3

Empirical results
Dynamics of the weighting effect in the German HICP

(A) Change in HICP weights

(B) December price ratios

(C) Weighting components

Note: The weighting component (in pp, red line) sums up the contributions of all products three of which are shown explicitly as stacked bars together with the aggregate contributions of the remaining products.
Price change component closely follows inflation rate, but...
... large weighting effects in some periods

![Graphs showing data trends for Germany, France, Italy, and the Euro area from 2000 to 2020.](chart)

Sebastian Weinand (Deutsche Bundesbank)
17th meeting of the Ottawa Group - 7 June 2022
Page 14
Weighting and quantity effects similar before 2021

Germany

France

Italy

Euro area

Sebastian Weinand (Deutsche Bundesbank)
17th meeting of the Ottawa Group - 7 June 2022
Chapter 4

Concluding remarks
Conclusions

- **Covid-19 pandemic induced large weight shifts**
 - Euro area inflation impacted by large weighting and quantity effects in 2021

- Before 2021, larger weighting effects observable in individual country HICPs from time to time

- **Reporting** of weighting and quantity effects **on a regular basis** if certain thresholds are exceeded
 - Decomposition 1: easy to implement and easy to communicate
 - Decomposition 2: advantageous from an index theoretical perspective
Appendix

Mathematical derivations
General decomposition of HICP inflation (I)

- In formal terms, the inflation rate $\pi_{y|m}$ can be expressed by

$$\pi_{y|m} = \frac{p_{y|m}}{p_{y-1|m}} - 1,$$

(A.1)

where $p_{y|m}$ is the HICP index value in month m ($m = 1, \ldots, 12$) of year y.

- The HICP $p_{y|m}$ is calculated as a Laspeyres-type index and chained over December:

$$p_{y|m} = \sum_{i=1}^{N} \frac{p_{i}}{p_{i-1|12}} \cdot \prod_{l=0}^{y-y^0} \delta_{y-l},$$

(A.2)

where δ_{y-l} is a chaining factor in year $y - l$.
General decomposition of HICP inflation (II)

- Inserting Eq. (A.2) into (A.1) gives

\[\pi^y|_m = \gamma^y \cdot \frac{\sum_{i=1}^{N} \frac{p_i^{y|m}}{p_i} w_i^{y-1}}{\sum_{i=1}^{N} \frac{p_i^{y-1|m}}{p_i} w_i^{y-2}} - 1, \]

(A.3)

- Defining the scaling factor \(\gamma^y|_m \) by

\[\gamma^y|_m = \delta^y \cdot \left(\sum_{i=1}^{N} \frac{p_i^{y-1|m}}{p_i} w_i^{y-2} \right)^{-1} = \frac{p^{y-1|12}}{p^{y-1|m} w_i^{y-2}}, \]

(A.4)

gives the general decomposition of the inflation rate:

\[\pi^y|_m = \gamma^y|_m \cdot \left(\sum_{i=1}^{N} \frac{p_i^{y|m}}{p_i^{y-1|12}} (w_i^{y-1} - x_i) + \sum_{i=1}^{N} \frac{p_i^{y|m}}{p_i^{y-1|12}} x_i \right) - 1 \]

(A.5)
Derivation of weights \tilde{w}_{i}^{y-1}

- If a price update is applied, official weights w_{i}^{y-1} applied to HICP compilation in calendar year y can be written as

$$w_{i}^{y-1} = \frac{p_{i}^{y-1|12} q_{i}^{y-1-l}}{\sum_{j=1}^{N} p_{j}^{y-1|12} q_{j}^{y-1-l}}$$

with $l = \begin{cases}
1 & \text{if } 2012 \leq y \leq 2020 \\
0 & \text{if } y > 2020
\end{cases}$ (A.6)

- Weights \tilde{w}_{i}^{y-1} can be derived from official weights w_{i}^{y-2} and are defined by:

$$\tilde{w}_{i}^{y-1} = \frac{p_{i}^{y-1|12} q_{i}^{y-2-l}}{\sum_{j=1}^{N} p_{j}^{y-1|12} q_{j}^{y-2-l}}$$

with $l = \begin{cases}
1 & \text{if } 2012 \leq y \leq 2020 \\
0 & \text{if } y > 2020
\end{cases}$ (A.7)

where q_{i}^{y-1-l} denotes the quantity of product i in year $y - 1 - l$.
Decomposition 1: Price change and weighting effects

Replacing x_i in (A.5) by official weights applied in HICP compilation in year $y-1$, w_i^{y-2}, yields:

\[
\text{Price change component} = \begin{cases}
\gamma^y m \cdot \sum_{i=1}^{N} \frac{p_i^y}{p_i^{y-1|12}} w_i^{y-2} - 1 & \text{if } m = 1, \ldots, 11 \\
\pi^{y|12} & \text{if } m = 12
\end{cases}
\]

(A.8)

\[
\text{Weighting effect} = \begin{cases}
\gamma^y m \cdot \sum_{i=1}^{N} \frac{p_i^y}{p_i^{y-1|12}} (w_i^{y-1} - w_i^{y-2}) & \text{if } m = 1, \ldots, 11 \\
0 & \text{if } m = 12
\end{cases}
\]
Decomposition 2: Pure price change and quantity effects

- Replacing x_i in (A.5) by the weights \tilde{w}_i^{y-1} yields:

\[
\text{Pure price change component} = \begin{cases}
\frac{\sum_{i=1}^{N} p_i^y q_i^{y-2-l}}{\sum_{i=1}^{N} p_i^{y-1|m} q_i^{y-2-l}} - 1 & \text{if } m = 1, \ldots, 11 \\
\pi^y_{|12} & \text{if } m = 12
\end{cases}
\]

(A.9)

\[
\text{Quantity effect} = \begin{cases}
\gamma^y m \cdot \sum_{i=1}^{N} \frac{p_i^y m}{p_i^{y-1|12}} (w_i^{y-1} - \tilde{w}_i^{y-1}) & \text{if } m = 1, \ldots, 11 \\
0 & \text{if } m = 12
\end{cases}
\]