A Model Based Approach to Produce Residential or Commercial Property Price Indices

16th Ottawa Group Meeting
Rio de Janeiro
Brazil May, 2019

Paulo Fernando Mahaz Simões
Brazilian Institute of Geography and Statistics – IBGE
paulo.mahaz@ibge.gov.br

HIGHLIGHTS

- Hedonic Double Imputation Laspeyres House Price Indices
- We Link Sold Properties
- Create Pseudo Housing Units
- Calculate Accurate Indices with Reduced Sample Sizes

To answer this questions we apply Mixed Effects Models

- Interesting technique to analyze longitudinal data because they offer us some prerogatives:
 a) Analyze individual trajectories
 b) Identify variance components
 c) Predictors that explain intradividual variance and variance among groups

Methodology

- We define a fixed sample (T) – 60 Specific Properties.
- We specify the Model
- Ex: To calculate Results for Jan/2016
 We estimate Model coefficients taking into account data from the last 24 months
 Generate Predict Values for each property in sample for Dec/15 and Jan/2016
 Calculate the index for Jan/2016 (matrix $\frac{\sum_{j=1}^{12}|(x_{ij} - \bar{x}_j)|}{\sum_{j=1}^{12}|\bar{x}_j|}$)

Model

Variables:
- Site, Month, Condo Characteristics, Neighbor (Zip Code), Distance to the sea

Hedonic Double Imputation Laspeyres Price Indices

6 different Sample Sizes

Indices for 2016 from different samples

Concluding Remarks

- We calculate Quality Adjusted Indices
- Longitudinal models allows more accurate results than other methods with the same sample size
- Results based on transaction prices
- We are analysing alternative data sources and methods (Using Appraisal Prices)

Appendix

Mixed Effects Models

Estimation of a standard linear model:

$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + \beta_4 X_{4t} + \eta_t + \xi_t$

Matrix Notation: $Y_t = (X_t) \cdot (\beta) - \mu$ + (Error)

We can specify distributions: $\mu \sim N(0, \Sigma) \quad \eta_t \sim N(0, \Sigma_e) \quad \xi_t \sim N(0, \Sigma_x)$

Cov Structure given by $\Sigma_e = \Delta \Sigma \Delta'$

Between Variance: ($\sum_{\Delta} \Sigma \sum_{\Delta} \Delta'$)

PS: Covariance Pattern Models (CPM): $Y_t = X_t \cdot (\beta) + \epsilon_t$, where $\text{cov}(\epsilon_t) = 0$

Thank you!