Online Price Index with Product Replacement: The Closest Match Approach

Manuel I. Bertolotto

PriceStats & Universidad de San Andrés

May 9th, 2019
1. Key problem: inflation rate measures using large datasets show abnormal trends
2. Factors contributing to this problem
3. Why don’t consumer price indices with traditional datasets suffer from this problem?
4. Possible solution to this problem: new approach to calculate a price index using large datasets – the Closest Match
5. Conclusions
Current methodologies to calculate a consumer price index (CPI) with online prices have shown an abnormal downward trend.

Examples: Apparel CPI, non-seasonally adjusted

Source: National Statistical Offices & PriceStats

Closest match | PriceStats & UdeSA | Manuel I. Bertolotto
Three factors explain the downward trend of the online indices: First, retailers replace more than 90% of their products every year.

- 50% of products last 5 months or less
- 75% of the products last 7 months or less

Source: PriceStats
Second, around 75% of the price changes are negative.
Third, products are usually introduced into the market at a full price and discontinued at a clearance price.
These factors do not affect the traditional CPI due to the collection methodology of national statistical offices.

The accumulated inflation rate of the CPI is:

\[
\Delta P^IV = \left(\frac{p_{A1,10}}{p_{A0,1}} \cdot \frac{p_{B1,10}}{p_{B0,1}} \right)^{\frac{1}{2}}
\]
However, online methodologies cannot identify qualitatively similar goods. Instead, both the old and new models of a good are automatically assumed to be different products.

TPD stands for Time Product Dummy

Price Index - 0 % inflation rate

Price Index - > 0% inflation rate
The Time-Product Dummy (TPD) method exemplifies the identification issue

Model equation

\[
\ln(p_{i,t}) = \alpha + \sum_{t=2}^{10} \delta_t D_{i,t} + \sum_{i=1}^{3} \gamma_i D_i + \varepsilon_{i,t}
\]

Accumulated inflation

\[
\Delta P_{TPD} = \left(\frac{p_{A1,10} p_{B1,10}}{p_{A0,1} p_{B0,1}}\right)^{\frac{1}{2}} \left(\frac{p_{A0,5} p_{B0,5}}{p_{A1,5} p_{B1,5}}\right)^{\frac{1}{2}}
\]

\[
\Delta P^{JV} < 1
\]
Identifying equal-quality products eliminates the abnormal downward trends of the online price indices

What happens when we identify equal-quality products using the TPD model?

Model and quality restriction

\[\ln(p_{i,t}) = \alpha + \sum_{t=2}^{10} \delta_t D_{i,t} + \sum_{i=1}^{3} \gamma_i D_i + \varepsilon_{i,t} \]

\[
\begin{align*}
\gamma_{A0} &= \gamma_{A1} \\
\gamma_{B0} &= \gamma_{B1}
\end{align*}
\]

Accumulated inflation rate

\[\Delta P_{TPD-C} = \Delta P_{JV} = \left(\frac{p_{A1,10}}{p_{A0,1}} \cdot \frac{p_{B1,10}}{p_{B0,1}} \right)^{\frac{1}{2}} \]
The Closest-Match method searches for a comparable item every time a new product enters the market. The method is scalable and automated.

1. Filter
 - The objective is to identify products from the previous season
 - Reduce the number of computations required in the next step in the score calculation

2. Score
 - Calculates a score for each feasible close-alternative good
 - The product with the highest score is considered the closest match, as long as that score is higher than a pre-defined threshold
Three rules define the filter

1. The start date of the replaced item is earlier or on $t - 90$.

2. The end date of the replaced item is at most $t - 365$ days old.

3. The replaced item has been available for at least ten days in the data.
The score is higher when the two product descriptions are more similar

\[S(q, d) = r(q, d) \ast \sum_{w=1}^{N} idf(w) \cdot fln(w, d) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q, d, w</td>
<td>Newly introduced item, feasible close-alternative good, word, respectively</td>
</tr>
<tr>
<td>r(q, d)</td>
<td>Relevance: Number of common words out of the total number of words in the newly introduced item (q)</td>
</tr>
<tr>
<td>idf(w)</td>
<td>Inverse description frequency of word w</td>
</tr>
<tr>
<td>fln(w, d)</td>
<td>Inverse of the number of words in a product description of the close-alternative good</td>
</tr>
</tbody>
</table>
The score threshold is defined ex-ante, based on a random sample of products

1. Select a random set of items and find their closest match
2. Sort the list of products by the score
3. Identify a threshold where products with a higher score than this threshold are of similar quality, and products with a lower score are significantly different

Example

<table>
<thead>
<tr>
<th>New product</th>
<th>Closest match</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-neck Blouse, dark blue</td>
<td>V-neck Blouse, dark blue</td>
<td>13</td>
</tr>
<tr>
<td>Off-the-shoulder Blouse, cotton</td>
<td>Off-the-shoulder Blouse, cotton</td>
<td>13</td>
</tr>
<tr>
<td>Blue shirt, 100% cotton</td>
<td>Red shirt, 100% cotton</td>
<td>9</td>
</tr>
<tr>
<td>Patterned Viscose Blouse</td>
<td>Blouse with Butterfly Sleeves</td>
<td>2.5</td>
</tr>
</tbody>
</table>
The Closest-Match Indices are remarkably similar to the traditional CPI

Source: National Statistical Offices & PriceStats
The online price index is not affected by the typical volatility of the number of items included.

Example - Spain

CPI versus Closest Match Index

Matches Out of New Items and Items per Day

Source: Instituto Nacional de Estadística (INE) & PriceStats
A persistent and large drop of the number of items negatively impacts the performance of the method.

Example - Netherlands

CPI versus Closest Match Index

Matches Out of New Items and Items per Day

Source: Centraal Bureau voor de Statistiek & PriceStats

Closest match | PriceStats & UdeSA | Manuel I. Bertolotto
Conclusions

• I suggest a possible solution to the product turnover problem: the Closest Match approach

• Instead of looking for a replacement when an item is discontinued, the closest-match approach searches for a comparable item every time a new product enters the market

• The methodology is robust to the typical item-count volatility of online data sources

• The method is scalable so that price indices can be calculated with thousands of products without manual intervention

• The closest-match indices show remarkably similar inflation trends to the traditional CPI