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1. Introduction3

The majority of  recent research literature dealing with quality adjustment of price indices is largely concerned of rather
technical issues. In the realm of  using regression models for quality adjustment the frequently occurring topics are the cor-
rect choice of price determining factors, functional forms of the regression equation and other aspects of the estimation of a
correct regression model.

As it comes to statistical agencies compiling price indices, the dominant form of thinking is the traditional matched model -
approach . The academic  research on hedonic regression models has so far been used in the official index compilation only
in a very conservative manner. As a variety originally chosen in the CPI sample disappears from the market a new variety is
selected instead. Hedonic  regression modelling then provides a method to estimate a previous period’s  price for the quali-
tatively equivalent product. This is done by estimating the previous period forecasted price for the newly selected product.
The calculation is performed using pre-established regression coefficients for certain price-determining factors. The basic
mechanism, however, is still matching the pairs.

In our opinion, there are more natural ways to use hedonic methods in index compilation, where the quality control is not
based on pre-specified matched pairs of observations, see also Hyrkkö – Kinnunen – Vartia (1998). We will elaborate a
rather general mathematical framework on hedonic regression models which, we hope, will make the future discussion on
the topic more structured. The framework explicates the mathematical relationships between various types of hedonic qual-
ity adjustment strategies. The formal considerations will be illustrated with empirical examples. The data we use has been
gathered as a part of standard CPI data-collection. The empirical results presented here are thus not only examples but also
give indication on the magnitude of  bias caused by the use of inappropriate methods when analysing  rapidly changing
markets.

The structure of the paper is as follows:

In Chapter 2 we will make some remarks on currently used practices of quality adjustment:
 (i) quality adjustment using only matched pairs approach,
(ii) overlap prices and
(iii) the attempt to cure the shortcomings of traditional approaches by using regression estimates to patch the data.

In (iii) a disappeared matched pair is substituted by a constructed patched pair. The remarks we make are based on the
results obtained from our test data of computers when attempting to follow the above mentioned  practices. Timo Koskimäki
wrote the first draft for this part.

In Chapter 3 we expose our formal framework starting with the most general variant of hedonic models, the case where the
coefficients of the model are allowed to change in time and the model  includes second order terms, or any other non-linear
terms. Linear and time-invariant models, including the frequently used Griliches-type models,  are considered as special
cases of the general model. The relationship between the various types of  hedonic approaches will be analysed and proven
mathematically. Empirical examples based on our test data will be provided for most the model types we consider. Yrjö
Vartia wrote the first draft for this part.

Chapter 4 concludes and suggests topics for further research.

2. The Traditional Approach

2.1 Characteristics of the PC markets - the test data

The data used in this experiment consists of 245 price observations. In addition to price, each observation also contains 5
simple quality characteristics of the computer model: processor type, processor speed, size of the hard disk, size of the
memory and size of the display. Material consists only of  desktop PCs’, laptops are not included in the study material. The
data used was collected between May and October  2000.  For this study, the originally monthly data sets have been merged
to three two-month sets, which we in the following refer to as “spring”, “summer” and “fall”.

The data was collected as a part of the standard price collection of the Finnish CPI. The only change as compared to stan-
dard practice was that the five quality variables used in this analysis were coded into the database. The information itself
was already available in the product characteristics that the price collectors are obliged to collect as a part of the standard
price collection procedure. The additional cost caused by coding of quality characteristics was negligible.

                                                          
3 Ms Mari Suviranta and Mr Kari Manninen from Statistics Finland have participated the work related to our project in
many ways. We express to them our most sincere thanks.
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Basic characteristics of the data are  given in table 1 below:

Table 1: Characteristics of the test data

Characteristics
Number of Mean Mean Mean Mean Share of high-end

observations Price Processor Memory Hard disk processors 
speed size size (Pentium III +, AMD Athlo

Period N € MHz Mb Gb per cent

Spring 83 1312 532 73,3 10,6 37,3
Summer 83 1282 549 74,8 10,7 43,4
Fall 79 1326 606 72,8 14 44,3
Total 245 1306 561 73,6 11,7 41,6

Assuming that our sample gives a representative picture of the Finnish PC-markets, the following  seems to have happened
between spring and fall  of year 2000:

- High-end processor types (pure Pentium and AMD Athlon -processors) have increased their market share
- Average processor speed has clearly increased, as well as the size of hard disks
- New computers are equipped with approximately same amount of memory throughout the period
- Unadjusted mean price decreases towards the summer and then rises again in the fall

2.2 Matching the pairs

As stated above, the prevalent strategy in official  price index construction is keeping the quality constant by following the
matched pairs strategy. The following account taken from the draft OECD handbook that has been prepared by Jack Trip-
let, summarises the pros of the approach in an excellent way:

"Price indexes, nearly universally, employ one fundamental methodological principle: The price index compiling
agency chooses a sample of retail outlets or sellers and of product. It collects an initial period, or base period, price for
each of the products selected. It then collects at some later date the price for exactly the same product, from the same
seller, that was selected in the initial period. The price index is computed by matching, observation by observation, the
price at the later period with the initial price.

The great advantages of this matching methodology are sometimes not explicitly stated, and other times not fully ap-
preciated. The “matched model” methodology holds constant many price-determining factors that are usually not di-
rectly observable. Examples are characteristics of the retailer, such as customer service, reputation of the manufacturer
etc. Matching the price quotes model by model (and outlet by outlet) is not just a methodology for holding quality
change constant in the items selected for pricing. It is also a methodology for holding constant non-observable aspects
of the transaction that might bias the measure of price change. "Triplett (2000),  pages 3-4).

The problem is, of course, that matching the pairs often fails.

Let us now try to apply the matching of the pairs methodology to our test data. When matching the spring data with the
summer data we obtain 55 matching pairs. In the fall data, only 16 computers out of the originally chosen ones are left in the
sample. Matching of the summer data with the fall data yields 27 matching pairs. The sample deterioration rates are pre-
sented in table 2. The high share of non-matches in summer- fall comparison is somewhat unexpected. From the sample
design point of view it should be approximately the same as for spring-summer comparison. Apparently, quite a number of
new computer models were introduced into the markets in the fall and reduced the effective sample size more than normally
would be expected.

Table 2: Share of successful matches
Share of

Target Matches successful matches

Period N N per cent

Spring - summer matching 83 55 66,3

Spring -  fall matching 79 16 20,3

Summer - fall matching 79 27 34,2

It is evident, that reliance on the pure matched pairs approach does not make very effective use of the data collected. In our
case, depending on the study period, thirty to eighty percent of  the collected price observations can not be used for index
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construction due to the failure of finding a matching variety. Although the two-month design of the study material somewhat
exaggerates the sample deterioration, the phenomenon is not negligible in a monthly material either.

The wasting of collected data is  not the only shortcoming of the matched pairs approach. In table 3 below we compare the
characteristics of matching models with the non-matching ones.

The samples of matching pairs get - in our test material -  rapidly biased. After two months, the computers that were on the
market in the spring and have been kept in the sample are clearly of lower quality than the replacements selected into the
summer sample. The same holds also when we compare summer data with fall data and, of course,  in comparing spring
with fall. This is quite understandable on the basis of traditional price-collection practices. Price collectors are advised to
follow the price of  the one and same model as long as it is possible. In  rapidly changing markets this practice apparently
leads to non-representative samples in the course of  a couple of months.

Table 4 shows the period-on-period changes and price indices based spring 2000 = 100. No explicit  quality adjustments
have been made.  The matched indices show only very moderate price changes. The overlap-index, where the summer-fall
matching pairs are all utilised, ends up with 2,4 percent price decrease. The "fixed-base" index that only takes into account
the 16 matched pairs for the summer - fall comparison shows, at the end of the period, practically no price change at all.

It is naturally impossible to continue the pure fixed base index for any longer period in time as all the models in the sample
will vanish. In practice it is possible, in addition to the overlapping prices, continue the price collection as if nothing had
happened, i.e. consider the changes in the models as irrelevant. This practice would in the case of computers lead to rapidly
increasing prices. The third possibility, if we exclude the use of hedonic methods, is to apply some form of  judgmental
quality adjustment. The impact of this procedure to observed price developments is difficult to foresee.

The "patched" index in table 4 has been constructed by replacing the base period missing prices with estimated values using
the same type of  linear models which will be presented in chapter 2.3. below. The patched index also shows a very moder-
ate price decline for the period. The main difference compared to fixed and overlap indices is that the patched index does not
indicate price increase from summer to fall as the other two indices do.

Table 4: Traditional price indices calculated
from matched (and patched) samples

Fixed-base Overlap Patched

Spring 100 100 100
Summer 96,5 96,5 99,8
Fall 99,8 97,6 99,4

One could argue that computer models should show some form of "market life-cycle", i.e. that a new model is introduced
into the market at a higher price and that the price of the model then decreases gradually until it disappears from the market
see Turvey (1999). . The phenomenon does not seem to be very prevalent in our data.  Figure 2.1 shows the price develop-
ments in our test material. Instead of  “market life cycle ” with continuously decreasing price the more common case seem
to be a "straight line" indicating that during its market life, the price of a computer model does not change. Almost 70 per-

Table 3: Characteristics of matching and non-matching computer

Number of Mean Mean Mean Mean Share of high-end
observations Price Processor Memory Hard disk processors

speed size size (Pentium III +, AMD Ath

Period N • MHz Mb Gb per cent

Summer, spring matches 55 1282 535 72,1 10,2 43,6

Summer, non-matches 28 1280 577 80 11,9 42,8

Difference, per cent 0,2 -7,3 -9,9 -14,3 1,9

Fall, spring matches 16 1307 518 68 10,2 25

Fall, non matches (1) 63 1331 628 74 15 49,2

Difference, per cent -1,8 -17,5 -8,1 -32,0 -49,2

Fall, Summer matches 27 1296 548 71,1 10,7 37,3

Fall, non matches (2) 52 1342 636 73,7 15,7 48,1

Difference, per cent -3,4 -13,8 -3,5 -31,8 -22,5



5

cent of the computers disappearing from our sample in summer showed no price change at all during the two-month period.
Although here again our test-sample design exaggerates the phenomenon, a considerable share of the price changes occur in
combination of the introduction of a new model.

This lack of clear market life cycles for PC models poses real problems to the traditional index construction methods, see
Vartia 1976. If the price changes in most cases occur in combination with the model changes, the only  reasonable method
for describing the price changes is some form of explicit quality adjustment.

Figure 2.1: Computer prices
Test data set,  spring - fall 2000, Finland 
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2.3 Hedonic models of price-determining factors

A necessary step in using hedonic methods for quality adjustment is to construct  a valid hedonic model. In case of comput-
ers, there exists quite a body of research- and working papers on the choice of relevant variables and other aspects of  model
construction. As the details of the modelling approach are not our major concern here, we just show here summary estima-
tion results on the two models and the  sets of data, which will be used as examples in the remaining part of this paper.

In both of the models the log of price is explained by other log-form variables. In our linear model the explanatory variables
are the log of processor speed and the log of the size of memory. In the non-linear model a second-order term,  squared log
of  processor speed  (actually the square of its deviation from its mean, which allows easy interpretation of the regression
coefficients),  is incorporated in the model as well.

Linear model estimated from the whole data set:

���������������������������������������������	
���
������������������	����

���������������������������������������������	
����������������������	���


���������������������������� ���������������
	�
�
�

��������������������������������������������������!���"������������������

� ��#�$%�����&�$�%��������������������������'�������(�#"���������������������� �%�����!��)�*�*

�+����,������+����,�������������������������
�������
	-������������	��

�������-	�
�����.	���


�%�"�"�������%�/����"�"��0������������������
��������	���
���������	���
��������	�-�����.	���


�%�(���������%�/����(�����������������������
��������	��-����������	���
������
�	

�����.	���




6

Non - linear model estimated from the whole data set:
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Linear model estimated from the spring data:
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Non- linear model fitted from the spring data:

���������������������������������������������	

���������������������	
���

���������������������������������������������	
�
��������������������	

��

���������������������������� ���������������
	
�
-�

�������������������������������������������!���"�������������������

����� ��#�$%������&�$�%�������������'��������(�#"������������������������ �%������!��)�*�*

�����+����,�������+����,������������
���������	�
��-���������	
�����������
	�
�������	
�-


�����%�(�����$����������������������
��������
	��������������	-


-��������	���������	��-�

�����%�"�"��������%�/����"�"��0�����
���������	��������������	�

���������-	
-������.	���


�����%�(����������%�/����(����������
���������	�
������������	
��
���������	
-������.	���


Linear model estimated from the fall data:
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Non-linear model estimated from the fall data:
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3. Mathematical theory of hedonic price functions and of quality
corrections in index numbers

3.1 Conceptual background and notation for different hedonic models

Let’s start from the general notation for all different variations of hedonic models (HM) we are going to consider. We
choose to consider instead of the actual price P its logarithm py log=  as the variable to be explained or forecasted using

the vector x of relevant explanatory (quality) variables and the time t. The conceptual background of all regression models is
the conditional expectation

(1) ( ) ( )xgtxpE t=,|log .

The function ( )xg t  of time t and x-vector defined by (1), defines the regression surface of plog . It is a mapping from

TR K ×  to R , where K is the number of explanatory x-variables and T is the set of time periods concerned. The functional

form of ( )xg t  is determined by the theoretical (usually hypothetical) joint distribution of the random vector

( ) ( )xpxxp K ,log...,,,log 1 =  indexed by time t. Different models for this joint distribution (which should be carefully ad-

justed to the actual problem considered, to the data available  and  to a priori knowledge concerning the dependencies4.) lead

to different functional forms5. of ( )xg t  We will shortly review some general possibilities,  which lead to different variations

of HM. We ignore in this treatment the problems of model building and of estimation as these are widely discussed in stan-
dard econometric and statistical texts, such as Goldberger (1964) or Spanos (1986).

We denote the estimated regression function simply by

(2)
( ) ( )

( ) .,|log txpEest

xgestxf tt

=
=

This simply gives the sample version of the systematic part or the best forecast of plog  in terms of explanatory variables x

and time:

(3) ( ) ( )xfxpp tt ==
∧∧

loglog .

Note that the variable x should not include any t-specification (an index t related to time) or any observation specification
(or a subindex such as i or j), because it is just the freely chosen symbol for the “independent “ variable  in the functional

notation. This comment holds for most forthcoming expressions and is not repeated after this. The function ( )xf t should be

applicable to just any values of its argument-vector, not just to their observed values (as in estimation) but also to any hy-
pothetical x-values or to x-values from other periods, as will be done after a while.

3.2 The general hedonic model

These general expressions look very simple because we deliberately leave aside, at this stage,  all modelling and estimation

problems. For instance, all the different functional forms of the HM are hidden in our notation ( )xf t .

Different functional forms will be taken up at a later stage of our presentation. This will be done by specialising the general
set-up (which is an easy step), so we use here “from general to specific approach” of (econometric) model building.

Essential features of (3) can be represented using its partial derivatives. Assume for simplicity of presentation that all x-
variables are continuous6. Denote the partial derivative of any kx by

                                                          
4 See Spanos (1986)
5 See Rao (1965, p. 220-249)
6 For discrete integer-valued variables partial derivatives are  replaced by the effects of changing the variable by one unit,

while keeping all other variables constant – the ceteris paribus condition. We also assume that ( )xf t  is continuously dif-

ferentiable everywhere, an apparently innocent assumption from the practical point of view.
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∂
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Note the symmetric way of defining the change in the k´th argument, which is the standard way of starting to approximate
the derivative by the difference quotient in numerical analysis, see Comrie (1966, p. 349) or Kahaner - Moler - Nash (1989,
p. 30). This approximation gives the ordinary (economic) interpretation of  partial derivatives as the effect of changing the
relevant variable by one unit, ceteris paribus.

In HM’s ( )xf t
k  is the (estimated) effect of the unit change of k’th variable on plog . Or even more concretely, 100 ( )xf t

k

tells how many log percent (also denoted by L% or log-%, see Törnqvist – Vartia – Vartia (1985)) the price increases when

the quality variable kx  increases by one unit (a semi-elasticity). As the notation shows the derivative ( )xf t
k  depends usu-

ally on both x and t.

Corollary: We cannot generally assume or restrict the quality effects as independent of time (i.e. to be the same for all time
periods) or as independent of the values of quality variables. These are rather restrictive but testable special cases of our
general set-up.

For a given value x of the quality vector we denote the effect of discrete change in time similarly.

(5) ( ) ( ) ( ) ( ) ( ) ,loglog 11
1 t

f
xpxpxfxfxf

t
ttttt

k ∆
∆=−=−=

∧
−

∧
−

+ where  •t = 1.

Also this ‘partial derivative’ of time (actually the difference quotient, cf. (4)) is usually a function of both x and t. Note that

( )xf t
k 1+  estimates the change of log-price for a given quality vector7. It is the estimated pure price  (PPC) change for

that quality vector. A useful illustration of this fundamental idea of a general hedonic method is given in Figure 1.

Figure 1: Illustration of PPC, the fundamental idea of  the general hedonic method

0x 1x

( )00 xf

( )11 xf

( )xf 0

( )xf 1

x

log  p

( ) ( ) ( )xfxfxf k
011

1
−=+

x

3.3 Standard quality points and the hedonic price index

Here we consider two time periods t = 0 and t = 1 and for the sake of illustration the quantity vector x is taken as one-
dimensional. Figure 1 shows also the essential features of HM when x moves in higher dimensions. Although the figure is
restricted to one-dimensional x only,  we verbalise the results in higher dimensions. These illustrations and later interpreta-
tions were developed by Vartia and Kurjenoja (1992) to evaluate wage discrimination between men and women. We have

                                                          
7  Differences of time dependent functions are affected by values from both periods and may be “plotted at” or regarded as
properties of the latter period (as is usually done) or of the former period (which would be an exceptional interpretation).
In numerical analysis these possibilities are distinguished by referring to backward and forward differences respec-
tively. Actually the difference should be plotted at a compromise value, namely at the mean value of the periods t and t-1,

i.e. at t – ½.  Therefore the proper notation for (5) would be ( )xf t
k

21
1
−
+ .
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shown also the mean values 0x  and  1x  of the quality variables and predictions (or fitted values) of plog , ( )00 xf  and

( )11 xf  at these mean values. The points 0x  and 1x  are referred as old and new standard quality points (SQP), respec-

tively. The vertical differences of the old and new hedonic functions ( )xf 0 and ( )xf 1 at these SQP´s measure the

quality corrected (or pure) price changes (PPC) at these points.

(6) ( ) ( ) ( )01
0

0001 log xPxfxf =− , PPC at the old SQP

(7) ( ) ( ) ( )11
0

1011 log xPxfxf =− , PPC at the new SQP.

Note that PPC is given in log-change form plog∆ or 
1

0log P  where 1
0P  is the hedonic price index (HPI). In (6) the log-

change of the HPI ( )01
0log xP  is calculated at the old SQP, while in (7) it is calculated in at the new SQP. Of course in

both cases arguments and SQP`s are the same, while the function changes from 0 to 1.This is the essence of standard
quality point method.

We explicate the interpretation of the components of (6) using (3):

(8)
( ) ( ) ( )

( ) ( ) .

ˆlogˆloglog
0001

000101
0

xfxf

xpxpxP

−=

−=

The hedonic price functions (HPF) may be also referred to as quality valuation functions (QVF). Thus

( ) ( )xpxf 11 ˆlog=  values the different quality points according to period 1 valuations as ( ) ( )xpxf 00 ˆlog=  uses pe-

riod 0 valuations. Quality valuations are allowed to change in time in general set-up and time invariant special valuations are
introduced later as a special assumption.

Using this suggestive terminology (8) leads to the following natural interpretation. The HPI ( )01
0log xP  compares the old

and new quality valuations at the same old SQP. The term ( )00ˆlog xp  shows how the old  SQP 0x was valued in period 0

as ( )01ˆlog xp  estimates its valuation using period 1 preferences. Their difference ( )xP1
0log  measures the pure change in

log prices for a constant quality point, as it should. Similarly

(9)
( ) ( ) ( )

( ) ( )1011

101111
0 ˆlogˆloglog

xfxf

xpxpxP

−=

−=

measures also the effect of changing valuations (or log prices) but for another constant quality point, namely SQP 1x . Thus
(8) and (9) are the natural versions of HPI where in both cases, the effects of quality changes have been eliminated or con-
trolled using standard quality points.

These basic ideas are further elaborated using OAXACA-type decompositions and their generalisations, to be presented
later.

These most important results (8) - (9) can be easily inferred and remembered using figure 1.

A.  If  10 xx =  or if there is no (or only little) quality change on the average ( ) ( )1101 loglog xPxP = , the choice

of SQP does not matter, rather surprisingly. In this case hedonic modelling does not affect the observed prices as compared
to simple comparison because

(10) ( ) ( ) 011101 ~
log

~
logloglog PPxPxP −≈= ,

although changing qualities may have considerable effect on micro level. In (10)  1~
P  and 0~

P  may be defined either as unit

values or other mean prices (preferably geometric means, in which case ∑
=

=
tn

i

t
ipP

tn

t

1
log

~
log 1 ). This result is easily proven

when QVF’s are linear functions in quality variables.
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B.  If there are systematic quality changes (i.e. 10 xx ≠ ) but the QVF’s (HPF’s) are roughly horizontal, quality
corrections have only minimal effects, because (10) applies approximately. This may at a first glance seem trivial, because
quality variables having only minimal effects are not usually included in hedonic models as they are not considered or called
as quality variables. However, if  x is K-dimensional, it may contain some quality variables that affect the price considerably

whereas other quality variables only have minor effects on the price. If the change 10 xx →  happens to realise only in the
direction of quality variables having only minor effects, then essentially we have the same situation as in A and (10) applies.

Combining cases A and B shows,  that even if there are strong quality effects on the micro level but either the average qual-
ity does not change or the average quality change is realised only for quality variables having minor price effect, then qual-
ity corrections are actually not needed. Of course it doesn't make any harm to use HM’s even in these cases.

3.4 The linear time-dependent hedonic model

We may restrict our treatment to the standard linear case by ‘assuming’ or treating HPF’s as linear functions of quality vari-
ables. This is not as innocent as it is usually regarded, because now a plane approximates a regression surface (1), which in
reality is non-linear. This may cause bias of unknown magnitude, which in some cases may not be negligible.

The linear regression models are usually considered as easier to estimate, handle and understand than non-linear ones.  This
is more like a general attitude towards model building than an established fact. Of course, if the regression surface (1) hap-
pens to be a plane, then it is naturally to estimate it by a corresponding linear functional form

 (11) ( ) ∑
=

+=
K

k

t
k

t
k

tt xbaxf
1

.

Now the partial derivatives have especially simple forms,

(12) ( ) t
k

t
k bxf = ,

which are time dependent constants. On the other hand the pure price change (PPC) for a given quality point x, namely

(13) ( ) ( ) ( ) ( )∑
=

−−− −+−=−=
K

k
k

t
k

t
k

ttttt
k xbbaaxfxfxf

1

111 )(

which depends on both x and t. This means that pure price changes for a given x are allowed to depend on x. The schematic
representation in the previous Figure 1 simplifies in the case of linear hedonic model (LHM) as follows:

Figure 2:  Illustration of a linear hedonic model

0x 1x

( )00 xf

( )11 xf

( )xf 0

( )xf 1

x

log p

For linear LHM we easily derive the following identities:



11

Theorem 1. For LHM given in (11) for any set of observations (not necessarily a sample) ( )Kiii xxx ...,,1= , tni ...,,1=
we have for all t:

(14) ( ) ( ) ( ) ( ).or    1

1

1 xfxfxfxf tt
in

t
n

i
i

t
tn

t

t

== ∑∑
=

Proof.

( )

( ).
1

1 1

1

1 1

1

1 1

1
_________

xfxba

xba

xba

xbaxf

t
K

k
k

t
k

t

K

k

n

i
ki

t
kn

t

n

i

K

k
ki

t
kn

t

n

i

K

k
ki

t
k

t

n

t

t

t

t

t

t

t

=∑+=

∑∑+=

∑ ∑+=

∑ ∑+=

=

= =

= =

=














=

Simply an arithmetic average (denoted by a long bar) of a linear function is the corresponding value o the function at the
arithmetic mean value (denoted by a short bar in argument). This is easily remembered by moving the long bar above the
function above its argument and making it short. This result holds necessarily for linear functions, but usually fails for non-
linear functions. Only by luck (or in very special circumstances) 14 hold for non-linear functions, as will be demonstrated
later. The case of non-linear functions is closely related to Jensen´s inequality (see Rao (1968, p.46) or Chung (1968, p. 45,

281)) and Itô´s formula, see Björk (1998, pp. 38-40, 43-48). Jensen´s inequality hods for any convex function ( )xf t of any

real random variable having an arbitrary distribution and it states that

(14b) ( ) ( )ExfxEf tt ≥

provided that the expectations exist. For any finite set of x-values this implies

(14c) ( ) ( ) ( ) ( ) .   i.e. 1

1

1 xfxfxfxf tt
in

t
n

i
i

t
tn

t

t

≥≥ ∑∑
=

For concave functions the inequality is reversed.

Theorem 2. If LHM is fitted by OLS (or by any other estimation method that forces the sum of residual to zero) to a sample

( )t
i

t
i xp ,log , ni ...,,1=  from the period t. Then in addition to (14) also

(15)

∑

∑
∧

=

=

t
it

t
it

t

p
n

p
n

p

log
1

log
1

log

Therefore both 
∧

= tt
pogpl log  and ( ) ( ).tttt xfxf =

Proof. (15) is just the condition that the sum of residuals in ( ) i
t
i

t
i

tt
i exfepp +=+=

∧

loglog  is zero.

Theorem 3. Decomposing the change ( ) ( )0011 xfxf −  into HPI and the effect of changing qualities ECQ. In Figure 3 we

can move from point ( )( )000 , xxf  to ( )( )111 , xxf  first via A giving (16) and then via B giving 17.
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Figure 3:

0x 1x

( )00 xf

( )11 xf

A

B

log p

 (16) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]011100010011 xfxfxfxfxfxf −+−+=

(17)
( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )10101
0

011100010011

log xxLQCFxP

xfxfxfxfxfxf

→+=
−+−=−

where LQCF is the Logarithmic Quality Correction Factor. Note that (16) and (17) are actually algebraic identities be-
cause the “cross terms” –  where upper indexes in the HPF and in its argument are different – can be cancelled out. The

interpretation to the pair (HPI, ECQ)= ( ) ( )( )10101
0 ,log xxLQCFxP → needs first some effort to be fully understood and

remembered.

(18)  
( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )10011
0

001010110011

log xxLQCFxP

xfxfxfxfxfxf

→+=
−+−=−

with its obvious interpretation into another pair of (HPI, ECQ) namely ( ) ( )( )10111
0 ,log xxLQCFxP → . Note that there

is a similar asymmetry or variation in the superscripts as in the well-known decompositions of value ratios into Laspeyres
and Paasche indices, where Laspeyres may be applied either as a price or a volume index and Paasche appears always as the
other pair.

Methodological comment. Recognising the validity of (17) and (18) is very different from realising the relevance of them.
Actually the algebraic “triviality” of (18) is revealed by the following derivation of it. Take any real number z and force zero
in the form 0 = z – z in the expression

(19) ( ) ( ) ( )[ ] ( )[ ]00110011 xfzzxfxfxf −+−=−

and group terms as indicated. This is an identity for any z. Choose ( )10 xfz =  to get (18), while ( )01 xfz =  gives (17).

Hence,  something important arises from a mathematical triviality. Note that the interpretation does not hold for an arbitrary
z in (19), but require the carefully adjusted choice of z giving (17) and (18).

This is an easy formal proof of (17) and (18), which has very little to do with the actual meaning and relevance of the re-

sults8. Their relevance stems from the decomposition of ( ) ( )1011 xfxf −  in terms of the two different (HPI, ECQ) –pairs

( ) ( )( )10101
0 ,log xxLQCFxP →  and ( ) ( )( )10011

0 ,log xxLQCFxP →  included in the illustrations. This simple iden-

tity is a generalisation of OAXACA-decomposition that is traditionally given for linear HPF's.

Theorem 4. Generalisation of theorem 3 to non-linear hedonic price function HPF. Decompositions (17) and (18) and their
proofs are valid as such also for non-linear HPF’s as illustrated in Figure 1.

Note, however, that Theorems 1, 2 and 5 do not hold for non-linear HPF´s, see Lemma 3 and Theorem 6.

                                                          
8 Cf. Wittgenstein (1967, p.92e): “Each proof proves not merely the truth of the proposition proved, but also that it can be
proved in this way.”
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We have decided to postpone the derivation of more familiar and in practice important linear HPF’s so that the reader may
better appreciate the relevance and meaning of the decompositions above.

Theorem 5. If linear HPF:s ( )xf 0  and ( )xf 1  are fitted separately to t-specific samples ( )t
i

t
i xp ,log , t = 0 and 1,

tni ...,,1=  using OLS (or any other estimation method which forces the sum of residuals to zero) then the following (HPI,

ECP) –decompositions hold as identities

(20) 
( ) ( )
( ) ( )10101

0

001101

log

loglog

xxLQCFxP

xfxfpp

→+=
−=−

(21) 
( ) ( )
( ) ( )10011

0

001101

log

loglog

xxLQCFxP

xfxfpp

→+=
−=−

Proof. Combine theorems 1, 2 and 3.

Before going any further, we present here empirical results based on the above considerations:

Empirical example 1: Standard Quality point approach, linear time dependent model

Estimated average log prices, HPI´s and LQCF´s

HPF or QVF based on: Hedonic Price Index, HPI
Standard Pure change in prices
Quality point, SQP Spring valuations Fall valuations in log-units in log-percents

Spring (old SQP) 7,157 7,080 -0,077 -7,7 log-%
Fall      (new SQP) 7,261 7,167 -0,094 -9,4 log-%

LQCF  (=ECQ)  in log-units 0,105 0,087
in log-percents 10,5 log-% 8,7 log-%

Actual observed mean values (cf. Figure 2) are given in bold.

Estimated geometric mean prices, HPI´s and QCF´s
In original units (��

HPF or QVF based on: Hedonic Price Index, HPI
Standard Pure change in prices
Quality point Spring valuations Fall valuations in � in per cent

Spring (old SQP) 1 283 1 188 -95 -7,4 %
Fall      (new SQP) 1 424 1 296 -128 -9,0 %

QCF  (=ECQ)  in � 141 108
in per cent 11,0 % 9,1 %

Actual observed mean values (cf. Figure 2) are given in bold.
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We present also the results showing exact correspondence with our decompositions and notations:

Logarithmic     Logarithmic Logarithmic
Standard Quality Point Pure Price Index Quality Correction Factor Sum of these

Linear time dependent HPF´s or QVF´s

SQP PPI LQCF Sum of these
Name Notation Notation  Value Notation Value Value Equations

Old SQP 0x ( )01
0log xP -0,077 ( )101 xxLQCF → 0,087 0,010 (17) & (53)

New SQP 1x ( )11
0log xP -0,094 ( )100 xxLQCF → 0,105 0,010 (18) & (55)

Weighted average of decompositions (17) and (18):

Overall SQP x ( )xP1
0log -0,086 ( )102/1 xxLQCF → 0,096 0,010 (61)

3.5 The non-linear time-dependent hedonic model

Theorem 6. If non-linear HPF’s ( )xf 0  and ( )xf 1  are fitted to t-specific samples using any estimation method, which forces

the sum of residuals to zero, then (20) and (21) are not usually identities but hold approximately. The approximation error is
related to the first equality (while the latter holds still as an identity) and depends on the degree of curvature (the second

order partial derivatives of  ( )xf 0  and ( )xf 1 ), at 0x and 1x and on the variances and covariances of the x-variables.

In fact the approximation error depends on the differences (or changes) of the second partial derivatives and second central
moments (variances and covariances) between the periods considered.

This technique makes use of some rather straightforward properties on non-linear approximation theory, that are applicable
in much wider contexts. As they  seem to be not well known we will demonstrate their usefulness in an elementary way.

Lemma 1. Let us start from the simple case of two-dimensional x-vector ( )21, xxx = and consider a function

( ) ( )21, xxfxf tt =  that is quadratic in these two arguments. Take any fixed point ( )21, xxx = , not necessarily the mean of

the variables at this stage, and consider the following special representation of ℜ→ℜ2:tf

(22)

( ) ( ) ( )
( ) ( )
( )( )22112

1

2

2222

12

1112

1

222111

xxxxd

xxcxxc

xxbxxbaxf

t

tt

tttt

−−+

−+−+

−+−+=

This representation9 of ( )xf t  is unique and has unique coefficients, which depend, of course, of the point ( )21, xxx =  cho-

sen. Consider two t-specific samples ( )t
i

t
i

t
i xxy 21 ,, , t = 0 or 1, tni ...,,1=  and suppose that ( )21, xxf t  is fitted to them

separately using any estimation method, that forces the sum of residuals to zero so that assumptions of the theorem 6 apply.

If we now specify the point above ( )21, xxx = as the t-specific mean ( ) ( )∑∑=== 1
2

11
1

1
21 ,, i

tni
tn

ttt xxxxxx

we derive in this simple special case quadratic function of two variables a most important result, which generalises to arbi-
trary twice continuously differentiable functions of any number of arguments:

(23)
( ) ( ) ( )

( ) ( ) ( )[ ] tttttttt

tttttt

xxCovdxVarcxVarc

xxfyxxfxxf

∆=++=

−=−

2122112

1

1
2

1
1

1
2

1
121

,

,,,

                                                          
9 Note that any valid representation of any function f describes and defines the function completely and therefore any of its
(infinitely many) representations reveals all the properties of f. The function f as a mapping should not be mixed with any
of its representations, because it’s something they all describe in a specific way. Much confusion arises when this is not
understood.
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This functional equation is the basic mathematical result leading to both univariate and multidimensional Itô’s lemma,
which is the basic tool in continuous time finance models, see Björk (1997). It shows, how the mean of values of a func-
tion of several (here two) variables is expressed in terms of value of the function calculated at mean value of its argu-
ments. These values are not the same (unless the function is linear, or the arguments have no variation) although our intui-

tion sometimes fails to notice this. The difference  (23) of these two depends on t∆  or of the second order derivatives or the
curvatures of the function (at the mean point as will be seen later) and on the corresponding variances and covariances of the
sample of argument points.

We repeat (23) in a more intuitive form for an easy reference

(23b)
( ) ( )

( ) ( ) ( )[ ]tttttttt

ttttttt

xxCovdxVarcxVarc

xxfxxf

2122112

1

2121

,

,,,  where

++=∆

∆+=

This is easy to visualise using the concepts of the long upper bar (which refers to the mean of the fitted values) and the
short upper bar (which refers to the mean of the arguments of the function).  If the long upper bar is substituted by a short

upper bar for its arguments, the covariance - curvature-term (of the Itô-type) t∆ must be added as a correction.

Proof. Consider

( )[ ] ( )
( ) ( ) ( ) ( ) ( )( )[ ]

( ) ( ) ( )[ ] ,,cov

0,,

212

1
222

1
112

1

22112

12

2222

12

1112

1
222111

2121

ttttttttttt

tttttttttttttttttt

t
i

t
i

tt
i

t
i

t
i

tt
i

tt

nxxdxVarcxVarcan

xxxxdxxcxxcxxbxxba

xxfexxfyyn

∆=+++=

−−+−+−+−+−+=

+=+==

∑
∑∑∑

where ( ) ( )∑ −= 21 t
k

t
kn

t
k xxxVar t , k = 1, 2.10   Dividing by tn  and noting that ( )tttt xxfa 21 ,=  gives (23).

A straightforward consequence of Lemma 1 is

Lemma 2. Assume the same as in Lemma 1.

(24)

( ) ( ) ( )[ ] ( )[ ]
( ) ( )[ ] [ ]
( ) ( ),0

2
0

1
01

2
1
1

1

010
2

0
1

01
2

1
1

1

00
2

0
1

011
2

1
1

1
21

0
21

1

,,                                    

,,                                    

,,,,

xxfxxf

xxfxxf

xxfxxfxxfxxf tttt

−≈

∆−∆+−=

∆+−∆+=−

where the difference of the covariance-type terms is

(24b)
[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )[ ].,cov2

,cov2
0
2

0
1

00
2

0
2

0
1

0
12

1

1
2

1
1

11
2

1
2

1
1

1
12

101

xxdxVarcxVarc

xxdxVarcxVarc

++−

++=∆−∆

Note from the first line of (24), how t∆ move the short upper bar versions from their long upper bar averages. However,
when terms are grouped as in the second line, differences between long and short bar versions will be good approximations

for each other, because the difference (24b) is usually nearly zero. This approximation must be good if 10
kk cc ≈ , 10 dd ≈

and ( ) ( )10
kk xVarxVar ≈ , ( ) ( )1

2
1
1

0
2

0
1 ,cov,cov xxxx ≈ , (k = 1, 2), i.e., the curvatures and the sample covariances are roughly time

invariant. This usually holds in practice. Equation (24) is even closer to Itô’s lemma than Lemma 1.

Next we generalise the Lemmas 1 and 2 for arbitrary quadratic functions in K-dimensional spaces. Let’s explain first why

the representation (22) was chosen for ℜ→ℜ2:tf .

Calculate the first two partial derivatives of it:

                                                          
10 Here we have tn and not 1−tn  as a divisor here and in the sample covariance. First degree terms vanish because

( ) 0=−=− ∑∑ t
k

tt
k

t
k

t
k xnxxx .



16

(25) ( ) ( ) )2,1(,, 2121 ==
∂
∂= kbxxf
x

xxf t
k

t

k

t
k

(26) ( ) ( ) tt

lk

t
lk dxxf

xx
xxf =

∂∂
∂= 21

2

21, ,, (if k and l are different)

( ) ( ) t
k

t

kk

t
kk cxxf

xx
xxf =

∂∂
∂= 21

2

21, ,,

We see e.g. that parameters ( )ttttt dccbb ,,,, 2121  are exactly the first and second partial derivatives of ( )21, xxf t  calculated at

the chosen point ( )21, xxx = , not necessarily the mean point. This explains why also the multiplier ½ appears in (22).

Now return to the general case where ( )Kxxx ...,,1=  and ( )Kxxx ...,,1= . A straightforward generalisation (which is for-

mally simpler than lemma 1) is:

Lemma 3. Let  ℜ→ℜKtf :  be any continuously twice differentiable function fitted in such a way to the samples

( )ttt
i Kii

xxy ...,,
1

, i = 1, …, nt, that the sum of residuals equals zero. Then we have

(27) ( ) ( ) ( ) tttttttt xfxfxfy ∆≈−=−

where the Itô-type covariance-curvature term equals

(27b)

( ) ( ) ( ) ( )

( ) ( ).,cov

,cov
2

1

1 1
,2

1

1
,,

1

∑∑

∑∑∑

= =

= <=

=

+=∆

K

k

K

l

t
l

t
k

tt
lk

K

k kl

t
l

t
k

tt
lk

t
k

tt
kk

K

k

t

xxxf

xxxfxVarxf

Note, that (27) is even simpler in its notation than its two-dimensional special version. Now we see in a very compact form,

how an average of fitted values ( )tt xf is approximated by the value of the function ( )tt xf  at the average point of its

argument vector. Note that for linear functions these must be equal. For non-linear functions t∆ appears and by Jensen´s
inequality it must be positive (negative) for convex (concave) functions.

 Equation becomes an identity for all quadratic functions ℜ→ℜKtf :  and a second degree Taylor-approximations for

any function (having continuous second partial derivatives in the neighbourhood of x, see Apostol (1957, p. 124)). Note that

covariances ( )tt
k li

xx ,cov  are calculated ‘only once’ in the middle expression (where l > k and multiplier ½ appears asym-

metrically) but appears two times in the last expression.11

The last representation is the most symmetric one and corresponds to the Taylor-expression of several variables.
Lemma 3 contains all previous cases and other interesting results as its special cases. We review these shortly

1. If ( )xf t  is (at most) quadratic but second order derivatives ( )xf t
lk ,  vanish, we are back to the linear case. Theorems 1 – 5

are derived as a special case because all Σ-expressions vanish and ( ) ( ) ( ) 0≡−=− ttttttt xfxfxfy . Also

(28)
tn

i

t
i

t pp
n

y loglog
1

1

1
1

== ∑
=

2. We rewrite (27) for any ( )xf t  well approximated by a quadratic Taylor-approximation

                                                          
11 These problems stem from the identity ( ) =++=+ 21

2
22

12
12

12

212

1 xxxxxx  ( )2
21221

2
12

1 xxxxxx +++  , where

122

1 xx is calculated ‘only once’ in the middle expression but ‘appears twice’ in the last expression. These three different

representations define the same quadratic function ( )21, xxf . We must always decide which of them (or perhaps some-

thing else) we are using and not get confused.
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(29) ( ) ( ) ( )1,0log =∆+== txfxfp tttttt

Here the first equality holds strictly because sum of residuals was forced to zero in estimation but second holds only as an
approximation. Subtracting equations for different time periods from each other and arranging terms we get

(30)  

( ) ( )0011

1

0
0

1

1
1

01

                       

log
1

log
1

loglog
01

xfxf

p
n

p
n

pp
n

i
i

n

i
i

−=

−=− ∑∑
==

These are strict equalities because sums of residuals vanished. This rather surprising result holding for arbitrary ( )xf t ´s

,which seems to be unknown in hedonic literature. Because ( )tt
pGp loglog = , the logarithm of geometric mean of prices12

we also have an interesting result

(31)
( )
( ) ( ) ( )0011

0

1

log xfxf
pG

pG −=

which holds without error for any non-linear HPF’s  fitted separately to respective samples (when residuals sum to zero).
Using the approximation part of (29) we get finally

(32)

( ) ( ) ( )[ ] ( )[ ]
( ) ( )[ ] [ ]
( ) ( )[ ]0011

010011

0001110011

                        

                        

xfxf

xfxf

xfxfxfxf

−≈
∆−∆+−=
∆+−∆+=−

(33) ( ) ( ) ( ) ( )∑∑∑∑
= == =

−=∆−∆=
K

k

K

l
lklk

K

k

K

l
lklk xxxfxxxf

1 1

0000
,2

1

1 1

1111
,2

1011
0 ,cov,covδ

Look at figure 4 for an illustration of (32). The vertical lines at old and new SQP´s meet the functions at black crossing

points, namely at “the short bar points” ( )00 xf  and ( )11 xf .The hollow points below them have drifted away because of

(29), but anyhow the differences between long and short bar points remain approximately equal. This is a rather involved

deduction, although all its parts are almost self-evident. In practice expression 1
0δ [ ]01 ∆−∆= involving covariance terms

will cancel away (because they are differences of similar terms of period 1 minus period 0). Therefore a simple but powerful
theorem results.

Theorem 6. For any non-linear HPF’s fitted separately to respective samples we have (32). Usually even 1
0δ  may be ne-

glected in which case

(34)

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ,
11

                   

11
log

0
0

11
1

10011

0
0

1
1

0011
0

1






−





=−≈

−=−=

∑∑

∑∑

ii

ii

x
n

fx
n

fxfxf

xf
n

xf
n

xfxf
pG

pG

where ( )Kxxx ...,,1=  is an arbitrary vector of quality variables. Furthermore, the difference ( ) ( )0011 xfxf −  is decom-

posed in the natural way e.g. as follows

(35)
( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]00101011

10011
0

0011 log

xfxfxfxf

xxLQCFxPxfxf

−+−=

→+=−

                                                          
12 Equations (30) and (31) together explain, why exactly the unweighted geometric mean should be used to aggregate
prices (or, equivalently, price ratios) on a micro index level, as is generally suggested



18

(36)
( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )[ ]01110001

10101
0

0011 log

xfxfxfxf

xxLQCFxPxfxf

−+−=

→+=−

These decompositions focus at particular parts of HPF´s namely at the old and new SQP´s (or better at old and new obser-
vations) and forget almost everything else. In a more symmetric treatment a weighted mean of these decompositions
(weighted by numbers of observations) is taken. This leads to a similar decomposition, where the terms in the resulting
(HPI, ECQ)-pair are weighted means of corresponding terms in (34) and (35). It may be shown by direct calculations or by

imputations in both directions to be considered later, that this leads to (HPI, ECQ) = ( ( )xP1
0log , ( )1021 xxLQCF → ),

where x is the overall mean of quality variables or the weighted mean of old and new SQP´s.

Now we have derived decompositions for three natural choices of SQP´s. Of course, these are only three possibilities. In
hedonic imputation all observed quality points are used as SQP´s to produce PPC´s for all prices, which actually means
comparing distances of old and new HPF´s for all data points and taking the average of these as the HPI. We return to im-
putation techniques in Chapter 3.7.

Figure 4: Illustration of  (34)- (36)

0x 1x

( )00 xf

( )11 xf

log p

Equations (35) and (36 )are identities and their interpretations as quality controlled price indices ( )11
0log xP  and

( )01
0log xP  and as Logarithmic Quality Correction Function ( )100 xxLQCF →  and ( )101 xxLQCF →  are evi-

dent from the figure. For arbitrary linear HPF’s with time dependent coefficients approximation in (34) turns out to an
equality and all equations (34)-(35) are identities. Note that in all these equations quality variables are actually K-
dimensional vectors and figure 4 is intended to reveal only their essential features.

To calculate SQP-estimates based  in terms like ( )11 xf and ( )10 xf , one has to be careful to able to concentrate on its

correct interpretation, which differs from common intuitive interpretations. We have based our treatment to a rather abstract
application of general mathematical concepts, although the expressions may not communicate this and may appear at the
first glance even trivial. To give a concrete example we consider our simple quadratic function of our second empirical

example, where ( )21 , xxx =  is two-dimensional and therefore e.g. ( )0
2

0
1

0 , xxx =  is the old SQP. This

( ) ( )21
11 , xxfxf =  was estimated  using the standard OLS-method in the form

(36b) ( ) ( ) 21
22

1
2

1
21

1
1

1
21

11 )(, xxcxbxbaxxfxf −+++== ,

where 2x = lnspeed and its squared deviation from its new mean (see above) was treated as the third (pseudo)variable, as it

should in OLS estimation. However, ( ) ( )21
11 , xxfxf =  must be treated as a function of two independent argu-

ments. It should not be considered as a function of three independent variables, as it appears in (36b) especially if it is writ-

ten using a new (pseudo)variable 21
22 )( xxz −= , if we "specify" our regression equation in the following  way:

(36c) ( ) ( ) zcxbxbazxxfzxf 1
2

1
21

1
1

1
21

11 ,,, +++== .

This is the usual way of representing non-linear regression functions when they are  estimated, but some serious problems
may arise from this convention. Here z cannot be treated "as an independent variable", because its values are determined

exactly by 2x . If this is not taken into account (which may happen by accident, if some standard routines in statistical pro-

grams like SAS are used) serious errors occur without us noticing anything.
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Simply we have

(36d) ( ) ( ) 0)(, 1
2

1
2

1
1

1
1

121
2

1
2

11
2

1
2

1
1

1
1

11
2

1
1

111 +++=−+++== xbxbaxxcxbxbaxxfxf ,

where we have an interesting representation of zero in the last component of the middle expression!

On the other hand, we get a perhaps oddly looking formula for the "cross term", where upper indices of the function and the
SQP differ:

(36e) ( ) ( ) 21
2

0
2

10
2

1
2

0
1

1
1

10
2

0
1

101 )(, xxcxbxbaxxfxf −+++== .

Note that coefficients are from period 1 function and the quadratic term includes, of course, the new mean of the second
quality variable, but the mean point for which the value of the function is calculated is the old SQP. Therefore (36e) includes
this quadratic term, which is not included in (36d).

We want to emphasise , that a particular representation of a function (which is a concept totally independent of the way it
is expressed, i.e. independent of the particular representation chosen e.g. to estimate it in regression analysis) should not be
allowed to confuse the treatment. Ordinarily, economists and statisticians seem to totally unaware of the need of this dis-
tinction, as they manipulate long and complicated mathematical expressions in a mechanical way. Therefore, a function and
(its infinitely many possible) representations or mathematical expressions must be carefully distinguished from each other
whenever possible, by sticking firmly to the general mathematical notation of a function without even mentioning the
complicated and partly arbitrary expressions used to specify it. This is an interesting case of the identification problem: a
function can never identify its representation, because there are infinitely many representations even for the simplest func-
tions, say for a function f(x) = 3 + 6x defined for all real numbers. We have e.g. f(x) = 3 + 6a +6(x – a) = 6(x + ½)
= x(6 + 1/(2x))  etc., which may be especially suitable for particular purposes in revealing different properties of this f(x).
Especially non-linear transformations of variables (say in non-linear co-ordinate transformations) easily confuse careless
researchers.

Empirical example 2: Standard Quality point approach, non-linear time dependent model

Estimated average log prices, HPI´s and LQCF´s

HPF or QVF based on: Hedonic Price Index, HPI
Standard Pure change in prices
Quality point, SQP Spring valuations Fall valuations in log-units in log-percents

Spring (old SQP) 7,133 7,064 -0,069 -6,9 log-%
Fall      (new SQP) 7,251 7,137 -0,115 -11,5 log-%

LQCF  (=ECQ)  in log-units 0,118 0,073
in log-percents 11,8 log-% 7,3 log-%

Estimated geometric mean prices, HPI´s and QCF´s
In original units (��

HPF or QVF based on: Hedonic Price Index, HPI
Standard Pure change in prices
Quality point Spring valuations Fall valuations in � in per cent

Spring (old SQP) 1 253 1 169 -84 -6,7 %
Fall      (new SQP) 1 410 1 257 -153 -10,9 %

QCF  (=ECQ)  in � 157 88
in per cent 12,5 % 7,5 %
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These results and their average decomposition are shown below in a more accurate notation.

Logarithmic     Logarithmic Logarithmic
Standard Quality Point Pure Price Index Quality Correction Factor Sum of these

Non-linear time dependent HPF´s or QVF´s

SQP PPI LQCF Sum of these
Name Notation Notation  Value Notation Value Value Equations

Old SQP 0x ( )01
0log xP -0,069 ( )101 xxLQCF → 0,073 0,004 (35)

New SQP 1x ( )11
0log xP -0,115 ( )100 xxLQCF → 0,118 0,003 (36)

Weighted average of decompositions (35) and (36):

Overall SQP x ( )xP1
0log -0,092 ( )102/1 xxLQCF → 0,096 0,004 (61)

3.6 Decompositions for time-invariant quality valuations

We are ready to pass on to more popular and restricted HM’s where quality valuations are time invariant. In this case HPF’s

(or QVF’s) are separable in time and quality dimensions, which is represented by the following property of ( )xf t :

(37) ( ) ( )xfaxf tt += ,

where ta does not depend on x and ( )xf  does not depend on t. Now the partial derivatives of ( )xf t  satisfy

(38) ( ) ( )xfxf k
t

k = , independent of t

(39) ( ) ( ) ( ) 11
1

−−
+ −=−= ttttt

k aaxfxfxf , independent of both t and x.

The pure price chance PPC for a given x is now independent of x, because HPF’s for different periods are just shifted ver-

sions of a time invariant QVF ( )xf  because of (37).

This is a very intuitive, easy and beautiful case, but may not adequately represent actual quality valuations. Therefore, its
validity cannot be decided a priori, but should be tested against the previous more general HM’s, where quality valuations
were allowed to change in time. Such tests are standard procedures in regression analysis.

Figure 5: Illustration of non-linear Griliches-type hedonic models (non-linear GTHM)

0x 1x

( )00 xf

( )11 xf

( )xf 0

( )xf 1

x

log p

If we specify further the model (37) by restricting ( )xf  to a linear function of the quality variables x we get the Griliches

type HM (GTHM):

(40) ( ) ∑
=

+=
K

k
kk

tt xbaxf
1

.
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Here the derivatives are very simple

(41) ( ) k
t

k bxf =  (independent of x and time)

This means that the valuation of quality components is constant in cross-section and is time-invariant. I. e: For all possible
quality points, the pure price change is the same constant (the assumption of "constant price change").

(42) ( ) 1
1

−
+ −= ttt

k aaxf (independent of x)

Figure 6: Illustration of the linear Griliches-type hedonic model (linear GHTM)

0x
1x

0x
1

( )xf
0

( )xf 1

x

log p

In GTHM HPF’s are non-linear functions of x or planes. They are furthermore shifted versions of one time invariant QVF

( ) ∑= kk xbxf , which is a linear function of all quality variables kx .

Of course, all our previous results hold for GTHM or its non-linear generalisations (37) referred to as non-linear GTHM. We
present the main results for GTHM’s as

Theorem 7. Main theorem for time invariant quality valuations.

Consider any non-linear HPF’s having time invariant quality valuations satisfying (37). When these have been fitted to
respective time specific samples using any estimation method forcing the sum of residuals to zero, results of theorem 6
apply. Especially have here

(43)

( )
( ) ( ) ( )

( )[ ] ( )[ ]
[ ] ( ) ( )[ ]01

01

0
0

1
1

0011
0

1

log

xfxfaa

xfaxfa

xfxf
pG

pG

−++=

+−+=

−=

The long bars can be transformed to short bars using (36) and (37) giving

(44)
( ) ( ) [ ] ( ) ( )[ ]
[ ] ( ) ( )[ ],1

0
0101

01
01

0011

dxfxfaa

xfxfaaxfxf

+−++≈

−++=−

where 011
0 ∆−∆=d is a usually negligible difference of the covariance terms (or the Itô-term) satisfying

(45)  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).,cov,cov

,cov,cov
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Here ( ) ( )xf
xx

xf
lk

lk ∂∂
∂=

2

,  are the second derivatives of the time invariant QVF ( )xf . If ( )xf  is quadratic in x (44)

holds as an identity, and generally it is a second degree Taylor-approximation for an arbitrary time invariant non-linear

QVF ( )xf .
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Neglecting the usually minor difference of the covariance terms 011
0 ∆−∆=d , we have

(46)
( ) ( ) [ ] ( ) ( )[ ]

( )101
0

01010011

log xxLQCFP

xfxfaaxfxf

→+≡

−++≈−

where the quality corrected price index [ ]011
0log aaP += is now independent of the standard quality point (e.g.

( ) ( ) [ ]0101
0

11
0 loglog aaxPxP +== ) and the logarithmic quality correction factor

(47) ( ) ( ) ( )1001 xxLQCFxfxf →=−

is time invariant (e.g. ( ) ( ) ( ) ( )01101100 xfxfxxLQCFxxLQCF −=→=→ ).

Empirical example 3: Estimation results, non-linear Griliches-type model.
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This leads to the following summary

Logarithmic     Logarithmic Logarithmic
Standard Quality Point Pure Price Index Quality Correction Factor Sum of these

Non-linear Griliches-type hedonic model, GTHM

SQP PPI LQCF Sum of these
Name Notation Notation  Value Notation Value Value Equations

any SQP lacking 1
0log P -0,089 ( )10 xxLQCF → 0,079 0,010 (46)

For easy reference we state the very specific results for linear GTHM ( ) ∑+= kkt
t xbaxf in a  separate theorem 8. Here

the covariance term 1
0d vanishes identically and even (46) becomes an identity.

Theorem 8. Main theorem for linear time invariant quality valuations or linear GTHM’s.
Consider any linear HPF’s having time invariant quality valuations or satisfying (40). These
have been fitted to respective samples using any estimation method forcing the sum of residuals

to zero. Now theorem 7 applies with 01
0 ≡d  and (46) as an identity. We have

(48)
( )
( ) ( ) ( ) [ ] ( ) ( )[ ]01

01
0011

0

1

log xfxfaaxfxf
pG

pG −+−=−≡

(49)
( ) ( ) ( ) ( )

( )101

1101

xxLQVC

xfxfxfxf

→=
−=−
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Therefore the log-change of geometric mean prices is decomposed in a unique way containing
no time or quality point dependent choices into two factors, a quality corrected price index and a
quality correction, as follows

(50)
( )
( ) [ ] ( ) ( )[ ] ( )101

0
11

010

1

loglog xxLQCFPxfxfaa
pG

pG →+=−+−≡ .

All equations (48) - (50) hold as identities.

The special conditions leading to these simple and beautiful results cannot be assumed a priori, because they are usually
refused by tests based on empirical observations. But theorem 8 gives an ideally simple and beautiful case, against which
more general (and more realistic) models should be contrasted. These cases are considered in our preceding theorems.

Empirical example 4: estimation results , linear Griliches-type model
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This leads to the following summary

Logarithmic     Logarithmic Logarithmic
Standard Quality Point Pure Price Index Quality Correction Factor Sum of these

SQP PPI LQCF Sum of these
Name Notation Notation  Value Notation Value Value Equations

Linear Griliches-type hedonic model, GTHM

any SQP lacking 1
0log P -0,083      ( )10 xxLQCF → 0,093 0,010        (50)

3.7 Hedonic imputation (or interpolation) and its connection to standard quality point
methods

In the so called Hedonic Imputation or Interpolation (HI for short) we may estimate (”impute”) for all old log-price-quality

points ),(log 00
ii xp  new log-prices )(log 01

ixp  corresponding to exactly the same old characteristics using the new version

of our HPF, namely

(51) )(log 01
ixp  = )( 01

ixf for all i = 1, …, n0 .

Let us consider first the simpler case of linear HPF´s, which are time dependent. Using (51) we are ready to calculate the
pure (or quality controlled) log-price changes as follows

(52) )(log 01
ixp - 0log ip  = )( 01

ixf - 0log ip  ,

which in geometric terms is a comparison between observed price points and their imputed prices lying on the HPF below
(or above) it. This is a vertical movement in the figure underlined by the term imputation. Interpolation refers to a computa-
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tionally different but equivalent horizontal movement, when we correct for quality changes in the case of matched pairs of
prices. Averaging over all old observations gives

(53) ∑ − )log)((log
1 001

0 ii pxp
n

= )(log)( 001 pGxf −

= )()( 0001 xfxf −  by (15)

= )()( 0001 xfxf − by linearity

= )(log 01
0 xP by (17).

Note that the asymmetry of the first two expressions vanishes if we start from estimated old prices )(log 00
ixp  instead of

the observed ones. The rest of the equation holds also for these because the sum of the residuals is zero. Also this procedure
is included in Hedonic Imputation. We have derived a very important and intuitively significant connection between HI and
SQP-method stated as

Theorem 9: Consider any time dependent linear HPF´s. If old log-prices or their estimates are imputed using the new
HPF and the resulting quality controlled log-price changes are averaged over all observations, the HPI  calculated at the old

quality point )(log 01
0 xP arises as the result. In this sense hedonic imputation of old prices and SQP-method at the old SQP

are equivalent.

We derive a similar result if new log-price-quality points ),(log 11
jj xp are imputed “backwards”  and the resulting pure log-

price changes (note the change in the order in the difference)

(54) 1log jp - )(log 10
jxp = 1log jp - )( 00

jxf for all j = 1, …, n1

are averaged:

(55) ∑ − ))(log(log
1 101

1 jj xpp
n

= )()(log 101 xfpG −

= )()( 1011 xfxf −

= )()( 1011 xfxf − by linearity

= )(log 11
0 xP by (18).

As above, more symmetric expressions arise if instead of actual new log-prices their estimates are taken as a starting point in
(55). We have proven

Theorem 10: Consider any time dependent linear HPF´s. If new log-prices or their estimates are imputed using the old
HPF and the resulting quality controlled log-price changes are averaged over all observations, the HPI calculated at the new
quality point )(log 11

0 xP arises as the result. In this sense hedonic imputation of new prices and SQP-method at the new SQP

are equivalent.

But we are ready to attack more specific problems of HM, because the conceptual and mathematical setup has been clarified

without any assumptions, how we have arrived at our time-specific HPF's or QVF's ( ) ( )K
tt xxfxf ,...,1= .

If we pool or combine imputations ”forward” (53) and ”backwards” (54), i.e. use both old and new observations in hedonic
imputation, we in fact calculate the weighted average of the resulting pure price indices with number of observations n0 and
n1 as weights. A straightforward calculation shows that this weighted average of pure price indices coincides with a pure
price index calculated at a similarly weighted quality point, referred as overall mean or SQP

(56) )/( , 101100  where nnnwxwxwx tt
+=+=

We have
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(57) )(log)(log)(log 1
0

11
0

101
0

0 xPxPwxPw =+

because log ( )P x0
1  is a linear function as a difference of two linear functions of the same arguments.

This result was shown already in Vartia and Kurjenoja (1992) in the context of wage discrimination between men and
women. We state the result shown above as

Theorem 11:  Imputation in both directions,
or a linear time dependent HPI if both old and new observations (or estimated values of log-prices) are imputed and the pure
log-price changes are averaged over all observations, the log of the HPI (57) )(log 1

0 xP  calculated at the overall mean (56)

of the quality variables arises as the result. In this sense hedonic imputation of both old and new prices and the SQP-method
at the overall mean are equivalent.

Theorems 9, 10 and 11 may be generalised for non-linear HPF´s. Proofs follow from the Theorem 6 and are omitted here.
Therefore we have

Theorem 12: Consider any non-linear time dependent HPF´s, which are estimated in such a way that residuals sum to

zero. Then Theorems 9, 10 and 11 hold approximately. The approximation error is estimated by d0
1  given in (33); this

1
0d  is negligible in most applications.

For instance, Theorem 9 generalises to

(58)
)(

)(
log

0

1

pG

pG
= )()( 0011 xfxf −

= ])()([])()([ 00101011 xfxfxfxf −+−

= )()(log 10101
0 xxLQCFxP →+

This is clearly an identity, where the (HPI, ECQ)-pair is calculated by aggregating micro-level PPC´s and ECQ´s accord-
ing to forward imputation instead of SQP-method. By theorem 12 HPI´s and ECQ´s calculated by imputation and SQP-
methods satisfy

(59) )(log)(log 01
0

01
0 xPxP ≈

(60) )()( 101101 xxLQCFxxLQCF →≈→

Note that in (59) and (60) means are calculated for the fitted values in the left hand side, which is typical in hedonic impu-
tation, while they appear as mean values of the arguments in (HPI, ECQ)-pairs, when SQP-methods or interpretations are
used. In the case of linear time dependent HPF´s and QVF´s  these two interpretations coincide,  In the linear case it does

not matter whether we start from the (HPI, ECQ)-pair ))(),((log 10101
0 xxLQCFxP →  of the SQP-type or of the

pair ))(,)(log( 10101
0 xxLQCFxP → of the hedonic imputation type.  They give exactly the same results for linear

HM´s by Theorem 9 and only the practical computations are different.

But in the case of non-linear time dependent HM`s they give different results and provide therefore different generalisations.
The first of them generalises the SQP-method for non-linear models, while the latter leads to hedonic imputation. They

allocate the 011
0 ∆−∆=d terms (plus other possible higher order terms caused by non-linearity) in different ways into

(HPI, ECQ)-pairs. Further research is needed to evaluate these problems.

Results of our empirical examples are collected in the following summary table, where they are easily compared.
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Summary Table of empirical examples

Logarithmic     Logarithmic Logarithmic
Standard Quality Point Pure Price Index Quality Correction Factor Sum of these

SQP PPI LQCF Sum of these
Name Notation Notation  Value Notation Value Value Equations

Linear time dependent HPF´s or QVF´s

Old SQP 0x ( )01
0log xP -0,077 ( )101 xxLQCF → 0,087 0,010 (17) & (53)

New SQP 1x ( )11
0log xP -0,094 ( )100 xxLQCF → 0,105 0,010 (18) & (55)

Weighted average of decompositions (17) and (18):

Overall SQP x ( )xP1
0log -0,086 ( )102/1 xxLQCF → 0,096 0,010 (61)

 Non-linear time dependent HPF´s or QVF´s

Old SQP 0x ( )01
0log xP -0,069 ( )101 xxLQCF → 0,073 0,004 (35)

New SQP 1x ( )11
0log xP -0,115 ( )100 xxLQCF → 0,118 0,003 (36)

Weighted average of decompositions (35) and (36):

Overall SQP x ( )xP1
0log -0,092 ( )102/1 xxLQCF → 0,096 0,004 (61)

Non-linear Griliches-type hedonic model, GTHM

any SQP lacking 1
0log P -0,089 ( )10 xxLQCF → 0.079 0.010 (46)

Linear Griliches-type hedonic model, GTHM

any SQP lacking 1
0log P -0,083 ( )10 xxLQCF → 0,093 0,010 (50)
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4 Conclusions

We have referred to the dual nature of hedonic models  by giving two different interpretations of it, namely its HPF-
interpretation (as comparing the time specific Hedonic Price Functions for a given the quality point. In this interpretation
we consider pure prices changes when the quality point is fixed). The other is its QVF-interpretation (as a Quality Valua-
tion Function for a given time period. In this interpretation we are interested, how changes in qualities affect the price when
time period is fixed). We have concentrated in the paper mostly on HPF-interpretation of the hedonic models but the nu-
merical examples illustrate both these view.

We have derived generalisations of the popular (but restricted) OAXACA-type decompositions of the log-change in geomet-
ric mean prices into the log-change of pure prices (or the log of the pure price index, log P0

1 ) and logarithmic quality

correction factor (or the effect of changing qualities on log-prices, LQCF). The most symmetric form of these generalised
OAXACA-decompositions is an identity for linear time dependent hedonic models (and an approximation for non-linear
ones)

(61) )()(log
)(

)(
log 10211

00

1

xxLQCFxP
pG

pG
→+=

where the LQCF is a weighed mean of LQCF´s based on old and new QVF´s given in (17) and (18):

(62)      LQCF x x1 2 0 1( )→ = )()( 10001011 xxLQCFwxxLQCFw →+→ .

In the case of linear time-dependent QVF´s (62) reduces to a single ”average QVF”, whose coefficients are weighted aver-
ages of time specific QVF´s, which explains our upper index ½ in these expressions. (Proofs of these statements based on
Theorem 11 are omitted here for brevity.) Therefore, we may duplicate our results by concentrating on QVF´s and LQCF´s

instead of HPF´s and 1
0log P ´s in eliminating effects of quality changes on the left side expression of (58).

All these important results are either identities (or their approximations), i.e. functional equations, see Eichhorn (1978)

arising from the basic functional setup, where log-prices are described using a HPF or QVF of type ( )xf t , where x is an

arbitrary vector of quality variables. Very little has been said of the choice of these quality variables, the number of them or
of the other aspects of hedonic model building such as the specification of the functional form of

( ) ( )k
tt xxxfxf ,...,, 21= , or its estimation and testing. Anything reasonable can be done concerning these aspects of the

hedonic modelling, and nothing more has been assumed than that the residuals sum to unity. This an important point in
understanding our results. We have been able to separate general mathematical aspects of the hedonic modelling and mak-
ing quality corrections from more specific problems related to model building and estimation of these models. We regard
this as our major contribution in the field.

After this we are ready to handle these more specific and technical problems which vary from one situation to another and
are essentially problem specific and data dependent.

The methodological comments explain also why we have given very few references to a wide literature on hedonic model-
ling. In HM either too many of its problems are considered at the same time or some specific aspects of hedonic
modelling (perhaps strongly connected to a special situation, application or to some "assumed" functional form such as
linear GTHM, etc) has been attacked. Therefore, most of the literature is either too general (or confused) to lead to any
useful results or too specific to be very interesting.

In some instances,  rather modest progress has emerged despite of the considerable resources invested in the projects on
quality adjustment.  In our view and interpretation, general and specific problems may have been mixed up in these ef-
forts in such a way that progress has slowed down and less than expected common understanding has emerged. The hetero-
geneity of the problems and the problem solvers (accompanied by varying commentators and practitioners on the field of
price indices) defines a too complex social environment to produce a general agreement on what should be done.

To be more specific, there seems to prevail a subconscious commitment to rather unnecessary but widely utilised conven-
tions (see Leamer (1983)) of sticking to Laspeyres type price indices and to "matched models" approach.  This has effec-
tively hindered the analysis of wider problems and more general techniques, e.g.  in the realm of hedonic modelling.

It seems unnecessary to stick to linear or non-linear versions of Griliches type of hedonic models GTHM and to avoid time
dependent linear or non-linear HPF´s, where either SQP-method or imputation has to be applied. Evidently, trying to take
into account time effects in the valuation of quality variables has been (mistakenly) regarded as too difficult. Our results
show, that this is no problem in the general setup. Common wisdom has also stressed estimation problems of HPF's, but
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on a rather practical level without properly referring to statistical or econometric literature. Practitioners seem to be rather
reluctant to use modern knowledge in the econometrics or sampling theory and are too tied to their traditional solutions, the
very solutions that cause their problems.

Many possible extensions of hedonic modelling are omitted here. Several topics such as

• possibilities to approximate non-linear HPF´s or QVF´s by linear ones, or
• time dependent functions using time invariant ones or
• other practical simplifications of actual HPF´s or QVF´s
• for instance by choosing the quality variables carefully or
• otherwise lowering the dimension of the x-vector

are interesting areas of further research.

We hope that we have succeeded in clarifying the foundations of HPF´s and QVF´s. We have been able to separate those
aspects of the quality correction problem that can be considered  in isolation from other more practical difficulties (say
from estimation problems) and also from the understandable reluctance of practitioners to implement new methods the
foundations and versatility of which is not yet generally understood.
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