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Abstract 
Price indices collect periodically huge amounts of data for products in different geographic 

locations. Such datasets may contain outliers due to sampling and non-sampling errors. The 

presence of outliers may bias the estimates and lead to misleading results. In such scenario, 

outlier detection techniques are very important to guarantee good estimator properties. The 

current methodology adopted in Sinapi relies on boxplot thresholds, a non-stochastic approach, 

of two aggregated univariate analysis to decide whether a price is pointed as outlier or not.  

This work presents a new outlier detection methodology based on multivariate Mahalanobis 

distance. This approach takes the covariance matrix into consideration and requires that the 

price dataset follow approximately a multivariate normal distribution. In the approach derived 

here we obtain robust mean and covariances estimates adopting the “Passo R” algorithm. 

Furthermore, we show how to obtain normality of the price data by the use of the Lambert Way 

transformation, which is able to deal with skewness and kurtosis of prices distributions and 

provide good approximations for normality.1 

 

                                                           
The views expressed in this paper are those of the authors and do not necessarily reflect the 
views of IBGE. 
 



 
 

1. Introduction 
The National System of Costs Survey and Indices of Civil Construction (Sinapi) monthly 

collects huge amount of input prices for civil engineering projects, with the aim of producing 

monthly series of costs and indices.  

The collected prices are used for a double purpose. First, to compile construction input 

price indices for different geographical areas: Each of 27 Brazilian states and a country index, 

derived via aggregation of the state results. The second purpose is based on a partnership 

between IBGE and the public bank CAIXA, where the Sinapi prices are used to generate median 

prices that are used to feed a system that generates costs for different building construction 

projects of sanitation, infrastructure, and dwelling sectors funded via public resources (IBGE, 

2017). 

Due this dual nature of the Sinapi, the detection and treatment of outliers deserve extra 

caution, since here the focus on price levels plays a role not present in consumer price indices 

where price variations are the main character. 

An outlier data is an observation which its magnitude appears to be surprisingly different 

(greater or less) than most other data (Barnett, et al., 1994). This observation may be just an 

extreme value of the original distribution, a contamination from a  different distribution 

supposed to fit the data (Bustos, 1988), an error coming from a sample process (selection error 

of a census sector, for example) or a case of error in the survey process (wrong typing, wrong 

reading of the questionnaire, etc.). 

The existence of outlier data can contaminate estimators and generate misleading 

results. In the case of Sinapi, budgeting may be overpriced due to a presence of an outlier. Thus, 

the process of outlier detection needs to be as robust as possible in order to support and 

increase the efficiency of the data analysis process, guaranteeing greater accuracy to the 

estimates and credibility for the survey. 

This work presents the current process of automated statistical outlier detection (CEA) 

for the Sinapi and propose an alternative approach, based on the Mahalanobis Distances 

(Mahalanobis, 1936), which is more refined, producing  robust parameter estimation properties, 

as well as the possibility to do statistical tests to decide whether a data is an outlier. 

The remainder of this paper is structured as follows. Section 2 presents the current 

methodology and introduces the alternative approach proposed. Section 3 describes a case 

study using the Black Annealed wire input. Finally, section 4 presents the conclusion and next 

steps for implementation of the new approach at IBGE. 

 

 

 



 
 

2. Methodology 
 

2.1 Current methodology  
 

The current outlier detection methodology, called CEA, make use of two statistics: Price 

relative (𝑅), and median deviation (𝐷𝑚𝑒𝑑), which are expressed as: 

 

 
𝐷𝑚𝑒𝑑𝑡,𝑖,𝑢,𝑙  = log (𝑃𝑡,𝑖,𝑢,𝑙/𝑀𝑒𝑑𝑡,𝑖,𝑢)

𝑅𝑡,𝑖,𝑢,𝑙  = log (𝑃𝑡,𝑖,𝑢,𝑙/𝑃𝑡−1,𝑖,𝑢,𝑙)
 (1) 

 

Where  𝑃𝑡,𝑖,𝑢,𝑙 denotes the price of an input 𝑖, observed at the month 𝑡, in a given 

geographic aggregate 𝑢 for the sample collection site 𝑙. 𝑀𝑒𝑑𝑡,𝑖,𝑢 is the median price of an input 

𝑖, observed at the month 𝑡 in a given geographic aggregate 𝑢.  

 While the relative measures the variation between the current level and the price of 

the previous month, the median deviation is used to standardize price. The log is applied for 

symmetric purposes. Therefore, the relative is the statistic analyzed for “control” of monthly 

price changes and the median deviation is used to check price levels of a given month. The CEA 

also adopts filters by geographic region, which amounts to only run the CEA if a minimum of 

nine prices is satisfied. 

Acceptance (rejection) regions are derived via the use of boxplot fences. The lower (𝐿𝐼) 

and upper (𝐿𝑆) thresholds are defined as:  

 

𝐿𝐼1 = 𝑞1 − 1,5(𝑞3 − 𝑞1) 
𝐿𝐼2 = 𝑞1 − 3(𝑞3 − 𝑞1) 

𝐿𝑆1 = 𝑞3 + 1,5(𝑞3 − 𝑞1) 
𝐿𝑆2 = 𝑞3 + 3(𝑞3 − 𝑞1) 

(2) 

 

Where in equation (2) 𝑞1 and 𝑞3 denotes the first and third quartiles, respectively, from 

the data distribution. 

Values of 𝑅 (or 𝐷𝑚𝑒𝑑) between 𝐿𝐼1 and 𝐿𝐼2 are marked with a single minus sign (-), 

values below 𝐿𝐼2 receives double minus sign (--). Values above 𝐿𝑆2 receive a double plus sign 

(++). Finally, values above 𝐿𝑆1, but below 𝐿𝑆2 receive a single plus sign (+). The boxplot in the 

Figure 1 illustrates the methodology used for signing the suspicious observations.  



 
 

 

Figure 1: Illustration of the use of boxplot fences to mark suspicious observations. The dotted 

blue lines refer to 𝐿𝑆2 and 𝐿𝐼2, while the red lines refer to 𝐿𝑆1 and 𝐿𝐼1 

The limits derived for 𝑅 and 𝐷𝑚𝑒𝑑 are joined in order to provide a 2-dimensional 

tolerance region for the determination of the tolerance region used in the CEA. In this process, 

the signs derived for the 1-dimensional regions, individual 𝑅 and 𝐷𝑚𝑒𝑑, are summed and 

provide the criteria to mark an observation as outlier (see Figure 2). 

The yellow regions in Figure 2 represent the area where an observation receives three 

marks. In this case, a verification alert is signed to the analyst. While in the red regions the 

observation receives four marks, then the data is marked as an outlier. 

Such outlier detection system has the main advantage of simplicity, from a 

methodological and implementation perspectives, since it is straightforward to calculate boxplot 

fences in any available software.  

The use of the boxplot fences to determine the tolerance limits of the current method 

is a non-stochastic approach, without an associated distribution for parameter estimation. One 

limitation of this methodology is the fact that both variables under study depends on the price 

of the current month, which may cause a correlation bias. Also, this methodology generates too 

many data to be manually verified according the analysts experience, introducing an excessive 

element of subjectivity. Finally, use of quantiles for outlier detection assumes that the data 

follow a symmetric distribution. However, most of price variations is positive so the data is more 

sensitive to the right tail. 

No s ignals  



 
 

 

Figure 2: Outlier detection region of the CEA method. The area is constructed joining the 1-

dimensional tolerance regions derived for 𝑅 and 𝐷𝑚𝑒𝑑 using the boxplot approach in Figure 1 

and summing the signs for the 2-dimensional case. Yellow area has three marks, while red area 

has four marks.  

 

2.2 Proposal of a new outlier detection approach 
 

 In this section we discuss the proposal of the implementation of a new outlier detection 

system for the Sinapi survey. The main objective here is to use an outlier detection method that 

is good enough to identify true outliers in the data and avoid the occurrence of false positives. 

The consumer price index manual presents some methods for outlier detection. The first 

is based in quantiles like CEA, and the second is based on Tukey algorithm, another non-

parametric methodology (ILO, et al., 2004). The idea in our study is propose an approach 

different from these methods that proposes the construction of regions based on formulas that 

are a function of the data that they will be applied to. The goal in our study is to propose a 

stochastic methodology that allows to derive statistics test. So, the approach proposed is based 

on the Mahalanobis distances, which has a chi-squared distribution when the assumption of 

normality is fulfilled. In addition, the method enables a multivariate approach, which allows to 

deal with correlation effects. 

The relative will be separated into two variables, namely 𝑃0 and 𝑃1, unlike the CEA, to 

deal with correlation issues. By doing so, the correlation bias present in the relative 𝑅 is 

quenched. These two variables can be considered as median deviations and their formulas are 

as follows: 

 𝑃0
𝑡,𝑖,𝑢,𝑙,𝑝

=
𝑃𝑡−1,𝑖,𝑢,𝑙,𝑝

𝑀𝑒𝑑𝑡−1,𝑖,𝑢,𝑝
 (3) 



 
 

𝑃1
𝑡,𝑖,𝑢,𝑙,𝑝

=
𝑃𝑡,𝑖,𝑢,𝑙,𝑝

𝑀𝑒𝑑𝑡,𝑖,𝑢,𝑝
 

 
 

Where in equation (3)  𝑃𝑡,𝑖,𝑢,𝑙,𝑝 denotes the price of an input 𝑖, observed at the month 𝑡, 

in a geographic aggregate 𝑢 for the sample collection site 𝑙 and with given informant profile 𝑝. 

𝑀𝑒𝑑𝑡,𝑖,𝑢,𝑝 is the median of an input 𝑖, observed at the month 𝑡, in a geographic aggregate 𝑢 and 

with given informant profile 𝑝.  

 

2.2.1 Mahalanobis distance 
 

The Mahalanobis distance is defined as follows: 

Let 𝑋 = [𝑃0, 𝑃1,]𝐿𝑥2, thus: 

 𝐷𝑀𝑙 = ( (𝑋𝑙 − 𝜇)𝑇𝛴−1(𝑋𝑙 − 𝜇))1/2, 𝑓𝑜𝑟 𝑙 = 1, 2, … , 𝐿 (4) 
 

 Where Σ is the variance-covariance matrix of 𝑋 and 𝜇 its mean vector, 𝑙 represents the 

collection site that is our sample unit, and 𝐿 is the total sample size. 

The Mahalanobis distance measures the distance between two or more variables from 

a central (or centroid) point, considering possible variance differences and linear relationships 

(correlation) between the data. Mahalanobis distances are also known as generalized (or 

weighted) distances. When the 𝛴 is equal to the identity matrix, it has the exact Euclidean 

distance formula (Mingotti, 2005). 

This methodology is suitable for situations in which data are elliptically distributed, a 

standard case observed for the multivariate normal distribution. Also, one of the several 

applications of the Mahalanobis distance is for the development of multivariate outlier 

detection.  

The calculation of Mahalanobis distances rely on estimates of sample mean and 

variances, and hence are subject to the influence of outliers in the samples, since these statistics 

are extremely sensitive to the presence of outliers. To circumvent this problem, it is necessary 

to adopt a robust estimation procedure. Also, it is important to search for a mechanism that 

does not neglect the outilers (which may be just extreme values of the distribution) in the 

estimation, but provide adequate weights to outlier data. If only the outlier data are removed 

from the estimation, the true scale of the observations would be underestimated. 

 

2.2.2 “Passo R” (Step R) 
 

In this work the robust estimation of the mean vector and variance-covariance matrix 

adopts the so called “Passo R” algorithm (Silva, 1989). The "Passo R" method refers to the second 

step of the "ER" algorithm, which is a modification of the "EM" algorithm. The "Passo R" aims to 

minimize the outlier effects on the estimation of the parameters of interest reducing the weight 

of the most discrepant observations, by means of an iterative process. 



 
 

The "E" step from “ER” algorithm refers only to missing data problems, which is not the 

case of Sinapi, where data is complete, so its use would become redundant. In this way, only the 

"Passo R" of the algorithm is used, which corresponds to the robust estimation step of the mean 

and variance-covariance matrix estimators. The method is expressed by the following 

expressions: 

 

(𝑎)  𝜇𝑞
𝐼+1 =

∑ 𝑊𝑙𝑋𝑙,𝑞
𝐼𝐿

𝑙=1

∑ 𝑊𝑙
𝐿
𝑙=1

                                                                ∀ 𝑞 ∈ {1, 2} 

(𝑏)  𝜎𝑞,𝑘
𝐼+1 =

∑ 𝑊𝑙
2{𝑋𝑙,𝑞

𝐼 − 𝜇𝑞
𝐼+1}{𝑋𝑙,𝑘

𝐼 − 𝜇𝑘
𝐼+1} + 𝐶𝑙,𝑞,𝑘

𝐼𝑛
𝑙

∑ 𝑊𝑙
2𝑛

𝑙 − 1
     ∀ 𝑞, 𝑘 ∈ {1, 2} 

(𝑐)  𝑊𝑙 = 𝜙(𝑑𝑙) / 𝑑𝑙      ∀ 𝑙 ∈ {1, 2, … , 𝐿} 

(𝑑)  𝑑𝑙
2 = [𝑋𝑙𝑝𝑙

𝐼 − 𝜇𝑝𝑙
𝐼 ]

𝑇
[𝑉𝑝𝑙𝑝𝑙

𝐼 ]
−1

[𝑋𝑙𝑝𝑙

𝐼 − 𝜇𝑝𝑙
𝐼 ] 

(𝑒)  𝜙(𝑑𝑙) = {
𝑑𝑙                                                                        𝑖𝑓 𝑑𝑙 ≤ 𝑑0

𝑑𝑙
0 exp {−(𝑑𝑙 − 𝑑𝑙

0)
2

/ 2𝑏2
2}                           𝑖𝑓 𝑑𝑙 > 𝑑𝑙

0  
 

 

(5) 

 

Where in equation (5) 𝐼 denotes the current iteration; 

 𝑑𝑙
0 = (𝑝𝑙)1/2 + 𝑏1/2 is the distance from which the discrepant data will have its weight 

damped by the estimation algorithm; 

 𝑏1 and  𝑏2 are control parameters set by the analyst, usually as 𝑏1 = 2 and 𝑏2 = 1,25 

(Little, et al., 1987); 

𝜙( . ) is an influence function (Hampel, 1973); 

𝑝𝑙  is the number of variables in the analysis in the case 𝑙. In the case of Sinapi, where 

the data is complete, 𝑝𝑙 = 2, which is the number of variables available for outlier detection. 

A good starting point is 𝑊1 = 1, as the data are complete. In this case the estimator is 

equivalent to the maximum likelihood estimator, and after the iterative process described in 

equation (5), the robust values will be reached. 

To summarize, the algorithm calculates the mean and variance-covariance matrix at 

steps (a) and (b), and the steps (c), (d) and (e) are used to reweight observations for next 

iteration of the algorithm, until the stop criterion is reached. 

The stop criterion for the "Passo R" algorithm is adjusted by the analyst, which sets the 

appropriate number (𝑁) of iterative steps. Further, the algorithm converges to a solution when 

the estimates of the variance-covariance matrix or mean vector are close enough as those 

calculated in the previous iteration step. 

Thus, the stop criterion writes: 

 

 Run While I ≤ N or máx {|
μ̂I − μ̂I−1

μ̂I−1
| , |

Σ̂I − Σ̂I−1

Σ̂I−1

|} ≥ 0.01 (6) 

 



 
 

  Where, in equation (6), the number of iterations defined by the analyst can be 

anticipated if μ̂ or Σ̂ estimated in iteration I is almost the same as in the previous iteration (I −

1). Here we fix the tolerance factor as 0.01. 

 

2.2.3 Challenges for implementation 
  

The "Passo R" algorithm is suitable for robust estimations if the dataset follows an 

approximately normal distribution, even when subjected to contamination of atypical 

observations. Such restrictions have to be taken into account since prices and salaries are usually 

derived from asymmetric distributions. Therefore, a transformation of our prices is necessary 

for the implementation of the "Passo R" and the Mahalanobis distances.  

The Box-Cox method (Box, et al., 1964) is a popular tool used to transform a dataset to 

normal distribution. The log transformation, which is a special case of the Box-Cox, is a simple 

transformation commonly used to symmetrize the data. The log transformation sounds as an 

attractive option for the Sinapi, where the “Passo R” algorithm needs to be implemented for up 

to 400 inputs in 27 brazilian states, since it is easy to implement and is not CPU-intensive, an 

important aspect to speed-up the process.   

Figure 3 presents the result of the application of the log transformation to the whole 

distribution of prices in the Sinapi database using the variable 𝑃1. Notice that skewness issues 

of the original price distribution are solved through the use of the log transformation. However, 

the transformed data fits to the Laplace distribution (red curve), which is characterized by the 

presence of heavy tails (high kurtosis values), thus depart them from normality. Such 

characteristic prevents the use of "Passo R" and Mahalanobis distances.  

Tue use of Box-Cox transformation instead of the log do not solve the heavy tail 

problem, since it is not suitable for heavy tails. The Box-Cox is applied to cases of high data 

variability and skewness, especially for standardization of residuals coming from linear models. 

Thus, another methodology is necessary. 

 



 
 

 

 

Figure 3: Distribution of input prices of Sinapi. from April 2018. (a) represents the density of 

the universe of prices of Sinapi. (b) shows the log transformation applied in the universe of 

prices of Sinapi, the red curve represents the double exponential (Laplace) distribution, while 

the standard normal distribution is in blue. 

 

2.2.4 Lambert Way Transformation 
 

The Lambert Way (LW) transformation can deal with problems of both skewness and 

kurtosis, generating approximately normal distributions (Goerg, 2014). The LW function 

provides an explicit inverse distribution which, estimated via maximum likelihood, can remove 

heavy tails from a distribution and still provide explicit expressions of cumulative distribution 

function (cdf) and probability density function (pdf). 

In summary, this methodology consists in estimating a parameter (𝛿), by the use of a 

maximum likelihood method, that governs the tail behavior. The LW method guarantees a 

bijective transformation, independent support of parameter values, and uniqueness when 𝛿 >

0. Thus, for simplicity we must assume 𝛿 > 0 (Goerg, 2014). 

The LW transformation can be easily implemented via the LambertW package available 

in the R software (R Core Team, 2013)  

The major limitation of this methodology relies on the fact that it cannot be applied to 

joint distributions, hence if applied to marginal distributions it is not guaranteed that a set of 

variables will be jointly normalized. The method depends on whether these marginal 

transformations maintain the previously existing correlations in order to fit to a normal 

multivariate distribution. 



 
 

Figure 4 illustrates the result of the data obtained after the use of the LW transformation 

to solve the heavy tails problems. Note that the data fits nicely to an approximately normal 

distribution (blue curve), while the Laplace distribution (red curve) is no longer suitable to the 

data. 

Once we guarantee that our data fits a normal distribution, we can rely on the 

Mahalanobis distances and the “Passo R” to derive robust and stochastic-based tolerance 

regions. 

As mentioned before, is necessary a method that is fast enough to be put into practice 

in Sinapi. Thus, the combination of the log transformation for symmetrization of the data and 

the LW transformation restricted to solve problems of heavy-tail is an attractive option since we 

can save some time with parameter estimation. 

If we can ascertain that our dataset is approximately normal we can benefit of 

theoretical results for the Mahalanobis distances, that under such circumstances can be 

approximated to a chi-square distribution. This result is very  suitable for the definition of the 

criteria for detecting outliers, since we can rely on the quantiles of the chi-square distribution 

to establish tolerance regions.  

 

 

 

Figure 4: Distribution of transformed input prices from April 2018. (a) log transformation 

applied in the universe of prices of Sinapi. (b) shows the Lambert Way transformation applied 

after the log transformation in universe of prices of Sinapi. The red curve represents the 

double exponential (Laplace) distribution, while the standard normal distribution is in blue. 

 



 
 

3. Case study – Black annealed wire 
 

In this section we compare the CEA with the method proposed in section 2.2. The 

analysis is employed to the input Black Annealed Wire (BAW), present in the Sinapi’s database. 

The data has sample size equal to 303 and represents the reference period of April 2018. 

Figure 5 shows the application of CEA to the BAW input. One can note that only one 

discrepant point was detected, receiving four plus signs, while no point received three signals, 

would require verification by the analyst according to CEA.  We note that in order to calculate 

the tolerance limits for the CEA all observations with price relative equal to unity are excluded. 

A process similar to the employed in the Tukey algorithm (ILO, et al., 2004). 

  

Figure 5: Tolerance regions according CEA. Red lines represent the area that a point receives 
two marks (plus or minus sign), blue lines represent the area where a point receive a single 

sign. 

 

Figure 6 shows the histograms of the log transformed standard prices P0 e P1 for the 

BAW input and after the LW transformation. Figure 6 (a) reveals the presence of extreme values, 

justifying the use of “Passo R” to calculate robust statistics to be used in the calculation of 

Mahalanobis distances, reducing the influence of the extreme values on the estimates. In 

addition, the p-values of the Shapiro-Wilk normality test are shown for the comparison between 

the BAW log price and the transformed version of the data via the LW method. One can note 

that the data transformed via LW can be considered normal at a significance level of 1%. The 

transformation for the case of P0  was not necessary, since the log was already enough to 

normalize the data, even so the LW transformation managed to improve its results. 



 
 

 

Figure 6: BAW Histograms using log transformation (top) and using the LW transformation 

(bottom). The blue line represents the theoretical quantiles of the standardized normal 

distribution.  

 The LW method does not guarantee the multivariate normality, necessary for the 

implementation of Mahalanobis distances, although the normality assumptions of the 

independent variables can be accepted. However, Figure 7  presents the joint distribution of 𝑃0 

and 𝑃1 and reveals that the transformed data fits to a multivariate normal distribution. It is 

interesting to note the proximity to a bell form in Figure 7 (a), as expected for the normal 

multivariate density. The contour plot presents an elliptical shape in Figure 7 (b), a typical 

situation in which the use of the Mahalanobis distances for outlier detection applies. In addition, 

the Royston test is presented, which is a multivariate extension of the Shapiro-Wilk test 

(Royston, 1983) and can be run by the use of MVN package in R (Korkmaz, et al., 2014). At a 

significance level of 1%, the multivariate normality hypothesis between the variables cannot be 

rejected. 



 
 

 

Figure 7: (a) 3-dimensional perspective multivariate density plot, where two dimensions refer 

to the values of the 𝑃0 and 𝑃1 and the third dimension is the multivariate normal probability 

density function. (b) Contour plot represents a projection of the multivariate density plot in a 

2-dimensional space. Also, the p-value of the Royston Multivariate normality test is presented. 

 

Once the normality assumption is fulfilled, we can calculate the Mahalanobis distances 

using the “Passo R” methodology for the robust estimation of the means and variances.  

Figure 8 presents the results obtained, where tolerance regions are derived for two 

levels of significance, 𝛼 = 1% and 𝛼 = 5%. We note the presence of a discrepant observation 

(red dot in Figure 8) which departs from the bulk of the data and lies outside the tolerance region 

even for 𝛼 = 1%. This is the same observation that was detected by the CEA. One also notes 

the presence of three observations (blue dots) lying outside the tighter tolerance region set by 

𝛼 = 5%.    

By setting the criteria that values lying outside the outer thresholds are outliers and 

these that lying between the two tolerance regions as extreme values to be verified, the new 

method identified one outlier and three observations that needs to be verified by the analyst, 

while the CEA identified just one discrepant observation. 

 



 
 

 

Figure 8: Tolerance regions using Mahalanobis distances. Red curve represents the tolerance 

limits at 𝛼 = 1% while blue curve represents limits at 𝛼 = 5%. Sample size = 303. 

 



 
 

4. Conclusion 
 

This work presented the current methodology of outlier detection of the Sinapi survey 

and proposed another method, based on the Mahalanobis distances, that surpasses the 

limitations of the current one. 

We discuss how the robust estimation of mean vector and variance-covariance matrix 

in the calculation of Mahalanobis distances are taken into account by means of the "Passo R" 

algorithm. The assumption of normality, which is commonly neglected in these types of 

analyses, was considered too. The combination of Log and LW method proved to be able to 

circumvent problems with skewness and kurtosis, respectively, guaranteeing the normality 

necessary for the application of "Passo R" and the Mahalanobis distances. 

A case study was presented for the BAW input used for the comparison between CEA 

and Mahalanobis distances. Both methods were able to detect the most discrepant point of the 

distribution. We noted that the CEA is more permissive than the Mahalanobis distances, missing 

three possible extreme values detected by the Mahalanobis distances tolerance region. 

The proposed fences 𝛼 =  1% and 𝛼 =  5% are suitable for the BAW input. However, 

a fine-tuning need to be performed considering various inputs of the Sinapi, to decide as to 

whether these fences really are the most appropriate, and if different values should be adopted 

for different inputs.  

Several products in the Sinapi input database have a large price variation due to their 

region of commercialization, but products geographically characterized were not considered. 

This issue will be addressed in future developments of the method. 
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